1.1.3  Классификация заместителей

Монозамещенные бензолы С6Н5Х могут быть более или менее реакционноспособны, чем сам бензол. Если в реакцию ввести эквивалентную смесь С6Н5Х и С6Н6, то замещение будет происходить селективно: в первом случае в реакцию будет вступать преимущественно С6Н5Х, а во втором случае - преимущественно бензол.

В настоящее время заместители делят на три группы с учетом их активирующего или дезактивирующего влияния, а также ориентации замещения в бензольном кольце.

1.  Активирующие орто-пара-ориентирующие группы. К ним относятся: NH2, NHR, NR2, NHAc, OH, OR, OAc, Alk и др.

2.  Дезактивирующие орто-пара-ориентирующие группы. Это галогены F, Cl, Br и I.

3.  Дезактивирующие мета-ориентирующие группы. Эту группу составляют NO2, NO, SO3H, SO2R, SOR, C(O)R, COOH, COOR, CN, NR3+ ,CCl3 и др. Это ориентанты II-го рода.

Естественно, что существуют и группировки атомов промежуточного характера, обусловливающие смешанную ориентацию. К ним, например, относятся: CH2NO, CH2COCH3, CH2F, CHCl2, CH2NO2, CH2CH2NO2, CH2CH2NR3+, CH2PR3+, CH2SR2+ и др.

1.2  Электрофильное замещение в π-избыточных гетероциклах

Фуран, пиррол и тиофен обладают значительной реакционной способностью по отношению к обычным электрофильным реагентам. В этом смысле они напоминают наиболее реакционно-способные производные бензола, такие, как фенолы и анилины. Повышенная чувствительность к электрофильному замещению вызвана несимметричным распределением заряда в этих гетероциклах, в результате чего на углеродных атомах цикла имеется больший отрицательный заряд, чем в бензоле. Фуран обладает несколько большей реакционной способностью, чем пиррол, а наименее реакционноспособен тиофен.

1.2.1  Электрофильное замещение пиррола

В то время как пиррол и его производные не склонны к реакциям нуклеофильного присоединения и замещения, они очень чувствительны к электрофильным реагентам, и реакции пирролов с такими реагентами протекают практически исключительно как реакции замещения. Незамещенный пиррол, N- и С-моноалкилпирролы и в наименьшей степени С,С-диалкилпроизводные полимеризуются в сильнокислых средах, поэтому большинство электрофильных реагентов, использующихся в случае производных бензола, не применимы для пиррола и его алкилпроизводных.

Однако при наличии в пиррольном цикле электроноакцепторных групп, препятствующих полимеризации, например, таких, как сложноэфирная, становится возможным использование сильнокислых сред, нитрующих и сульфирующих агентов.


Протонирование

В растворе наблюдается обратимое присоединение протона по всем положениям пиррольного цикла. Наиболее быстро протонируется атом азота, присоединение протона по положению 2 проходит в два раза быстрее, чем по положению 3. В газовой фазе при использовании кислот умеренной силы, таких, как C4H9+ и NH4+, пиррол протонируется исключительно по атомам углерода, причем склонность к присоединению протона по положению 2 выше, чем по положению 3. Наиболее термодинамически стабильный катион - 2Н-пирролиевый ион - образуется при присоединении протона по положению 2 и определяемое значение рКа для пиррола связано именно с этим катионом. Слабая N-основность пиррола обусловлена отсутствием возможности для мезомерной делокализации положительного заряда в 1H-пирролиевом катионе.

Значение рКа определено для большого числа производных пиррола, а сам незамещенный пиррол — чрезвычайно слабое основание со значением рКа -3,8. Основность пиррольного цикла весьма быстро увеличивается при введении алкильных заместителей, и для 2,3,4,5-тетраметилпиррола рКа равен +3,7, что соответствует полному протонированию всех молекул пиррола в вышеприведенных условиях (для сравнения рКа анилина +4,6). Таким образом, алкильные группы оказывают необычайное стабилизирующее влияние на катионы - пирролы, содержащие трет-бутильные группы, при протонировании образуют стабильные кристаллические соли.


 

Реакции протонированных пирролов

2Н- и ЗН-Пирролиевые катионы в сущности представляют собой иминиевые ионы и, следовательно, обладают свойствами электрофилов. Эти катионы играют ключевую роль в процессах полимеризации и восстановления пирролов в присутствии кислот. При взаимодействии пирролов с гидрохлоридом гидроксиламина, сопровождающимся раскрытием цикла и образованием 1,4-диоксимов, вероятно, образуется более реакционноспособный ЗН-пирролиевый катион. Для защиты аминогруппы первичных аминов могут быть превращены в 1-К-2,5-диметилпирролы, затем защитная группа может быть удалена с помощью описанной выше реакции с гидроксиламином.

Нитрование

Нитрующую смесь, применяемую для нитрования производных бензола, нельзя использовать в случае пиррола, поскольку это приводит к его полному разложению. Однако нитрование пиррола возможно при использовании ацетилнитрата при низких температурах, причем преимущественно образуется 2-нитро-пиррол. Ацетилнитрат получают при смешивании дымящей азотной кислоты с уксусным ангидридом, и в результате образуется уксусная кислота и достигается удаление сильной минеральной кислоты. При нитровании пиррола с использованием ацетилнитрата активность положения 2 в 1,3 • 105, а положения 3 в 3 • 104 раза выше активности бензола.

Введение заместителя к атому азота увеличивает долю продукта нитрования по положению 3 в смеси продуктов реакции: так, введение метального заместителя обусловливает получение смеси продуктов β- и α-нитрования в соотношении 1:3. Более объемная трет-бутильная группа приводит даже к обращению относительной реакционной способности — продукты β- и α-нитрования образуются в соотношении 4:1. Полного подавления реакции нитрования по α-положению пиррола можно достигнуть при введение к атому азота триизопропилсилильной (TIPS) группы; использование последней чрезвычайно важно при синтезе 3-производных, так как в последствии она может быть легко удалена.


Сульфирование и реакции с использованием других серосодержащих электрофильных реагентов

Для сульфирования пирролов используются мягкие сульфирующие агенты, не обладающие свойствами кислоты; так, комплекс пиридин — триоксид серы мягко превращает пиррол в пиррол-2-сульфонат .

 

Реакции с использованием других серосодержащих электрофильных реагентов, например сульфинилирование пиррола, тиоцианирование пиррола и 1-фенилсульфоиилпиррола, позволяют получать серосодержащие производные пиррола с атомом серы в более низкой степени окисления.

Катализируемая кислотой перегруппировка производных пиррола, содержащих серосодержащий заместитель в α-положении (продукт кинетически контролируемого электрофильного замещения), позволяет получать соответствующие β-изомеры.


 

Галогенирование

Галогенирование пиррола протекает настолько легко, что, если специальным образом не контролировать течение реакции, образуются исключительно стабильные тетрагалогенопроизводные. Попытки провести моногалогенирование простых алкилпирролов оказались безуспешными, поскольку при этом образуются чрезвычайно реакционноспособные пиррилалкилгалогениды - продукты галогенирования боковой цепи.

2-Бром - и 2-хлорпирролы — нестабильные соединения, которые можно получить прямым галогенированием пиррола. Использование 1,3-дибром-5,5-диметилгидантоина в качестве бромирующего агента приводит к образованию 2-бром - и 2,5-дибромпирролов; продукты бромирования стабилизируют немедленным превращением в N-трет-бутилоксикарбонильные производные. Бромирование N-трет-бутилоксикарбонилпиррола с использованием N-бромсукцинимида приводит к 2,5-дибромпроизводному


При монобромировании и моноиодировании N-триизопропилсилилпиррола образуются практически исключительно 3-галогенозамещенные пирролы, а использование двух эквивалентов N-бромсукцинимида позволяет получить 3,4-дибромпроизводное

 

Ацилирование

Прямое ацетилирование пиррола уксусным ангидридом при 200 °С приводит к образованию 2-ацетилпиррола с примесью небольшого количества 3-ацетилпирола; N-ацетилпиррол в этих условиях вовсе не образуется N-Ацетилпиррол можно получить с высоким выходом при нагревании пиррола с N-ацетилимидазолом.

Алкильные заместители облегчают процесс ацилирования по атому углерода: так, 2,3,4-триметилпиррол превращается в 5-ацетилпроизводное даже при кипячении в уксусной кислоте. Более реакционноспособные трифторуксусный ангидрид и трихлорацетилхлорид реагируют с пирролом даже при комнатной температуре с образованием продуктов 2-ацилирования, которые в результате гидролиза или алкоголиза обеспечивают удобный синтетический подход к пиррол-2-карбоновым кислотам или их эфирам.

Сильные электроноакцепторные заместители (мета-ориентирующие группы) в α -положении пиррольного кольца склонны изменять присущую пирролу региоселективность в реакциях электрофильного замещения — последующее замещение протекает по положению 4, а не по свободному α-положению.


Алкилирование

Моноалкилпроизводные пиррола (по атому углерода) не удается получить прямой реакцией пиррола с алкилгалогенидами как в результате катализируемого кислотой Льюиса алкилирования, так и в отсутствие катализатора. Пиррол не вступает в реакцию с метилиодидом при температурах ниже 100˚С, однако при температурах выше 150˚С в результате серии превращений образуется сложная смесь, состоящая главным образом из продуктов полимеризации и некоторого количества полиметилированных производных пиррола. Более реакционноспособный аллилбромид реагирует с пирролом при комнатной температуре, однако в результате этого взаимодействия образуется смесь различных аллилпирролов (от моно - до тетразамещенных) одновременно с продуктами олигомеризации и полимеризации. Наиболее гладко пиррол моноалкилируется сопряженными енонами, содержащими уходящую группу в β-положении.


Информация о работе «Электрофильное ароматическое замещение»
Раздел: Химия
Количество знаков с пробелами: 30798
Количество таблиц: 2
Количество изображений: 16

Похожие работы

Скачать
48080
0
4

... в три или четыре шага, таким образом, обеспечивается простой синтеза 3,5-диарилпирролов из енаминкетонов. Выход продукта составляет ~60%. Общий и региоселективный синтез замещенных пирролов (18) путем циклоизомеризации легко осуществить из (Z)-(2-ен-4-винил)аминов (17) (~65%). Происходит произвольная циклоизомеризация и далее присоединение к тройной связи, после чего енамины становятся более ...

Скачать
104829
5
91

... (2,2,5,5-тетраметил-3-имидазолин-3-оксид-4-ил)фенилметанолу и 2,2,5,5-тетраметил-4-триэтилгермил-3-имидазолин-3-оксиду. Подобраны условия, позволяющие провести литиирование 5,5-диметилпирролин-1-оксида и последующую реакцию с электрофильными реагентами селективно по альдонитронной группе на фоне активной метиленовой группы. Реакция литиированного производного альдонитрона 1,2,2,5,5-пентаметил ...

Скачать
12845
2
0

... . Вместо присоединения нуклеофильного реагента к карбокатиону отщепляется протон. Так как образуется энергетически более устойчивая ароматическая система (1) по сравнению с диеновой (2): . Правила ориентации электрофильного замещения в бензольном кольце. Все заместители делятся на два типа: первого рода (о- и п-ориентанты) и второго рода (м-ориентанты). . Заместители первого рода, кроме Alk- ...

Скачать
42618
0
1

... ) В ряду ароматических углеводородов часто применяют тривиальные названия, например, метилбензол иначе называют толуолом. По международной номенклатуре (правила ИЮПАК) все ароматические углеводороды объединяют названием – арены. Соответственно, их одновалентные остатки, образованные отнятием водорода от углеродных атомов ядра (одновалентные ароматические радикалы), называют арилами и обозначают - ...

0 комментариев


Наверх