2.3 Расчет усилителя радиочастоты

В приемниках РЛС сантиметрового диапазона волн наибольшее распространение получили однокаскадные неохлаждаемые двухконтурные параметрические усилители (ДПУ) на точечно-контактных полупроводниковых диодах (ТКД) или диодах с барьером Шоттки (ДБШ). В настоящее время на частотах до 30 ... 40 ГГц эти усилители выполняют на базе полосковых (ПЛ) и микрополосковых (МПЛ) линий. ДПУ содержат три контура, настроенные соответственно на частоту сигнала fс, частоту накачки fн и холостую частоту fх и развязанные между собой. Развязку между входом и выходом ДПУ осуществляют с помощью ферритового циркулятора.

Эквивалентная схема параметрического диода включает в себя последовательно соединенные индуктивность выводов Lв = 0.2 - 2 нГ, переменную емкость полупроводниковой структуры Сп = 0.3 … 1 пФ, сопротивление активных потерь rпт и параллельно подключенную к этой цепи конструктивную емкость диода Сд = 0.1 … 0.4 пФ. Диод характеризуется максимальной переменной емкостью при нулевом напряжении смещения Uсм = Сп(0), постоянной времени (U) = rпт Сп(0) при определенном напряжении смещения U, максимально допустимым обратным напряжением Uнобр контактной разностью потенциалов (к = 0.2 … 0.3 В для ТКД и к = 1 … 1.2 В для ДБШ). В состав СВЧУ может входить типовой ДПУ с параллельным включением параметрического диода. Схема такого усилителя показана на рисунке.

Наибольшую полосу пропускания ДПУ получают при использовании последовательного резонансного контура, образованного Lв и Сп диода и настроенного на fх. При этом обеспечиваются наименьшие потери и развязка относительно цепей сигнала и накачки без включения специальных режекторных фильтров. В схеме с параллельным включением диода для замыкания токов холостой частоты к нему подключают разомкнутый четвертьволновый шлейф. Элементы контура холостой частоты и подстроечный индуктивный отрезок длиной l1 образуют сигнальный резонансный контур.

Параллельно с диодом включают отрезок длиной lн / 4, препятствующий потерям мощности накачки в цепях сигнала. Сигнал накачки подводится к диоду через запредельный для входного сигнала и сигнала холостой частоты волновод. Полосу пропускания ППФ выбирают такой, чтобы эти сигналы были ослаблены не менее чем на 20 … 30 дБ.

При этом требуемый коэффициент шума N, коэффициент передачи мощности Kp, частота сигнала fс, требуемая ширина полосы пропускания Птр по уровню 3 дБ, характеристики подложки (относительная диэлектрическая проницаемость r, толщина h, тангенс угла потерь tg (, волновое сопротивление подводящей линии Z0, тип циркулятора и его прямые потери Lп, число циркуляций до входа ДПУ а и число циркуляций в ДПУ b известны.

Рабочая частота.

Волновое сопротивление подводящих линий.

Потери пропускания в циркуляторе (в дБ).

Число циркуляций до входа ДПУ.

Число циркуляций в ДПУ.

Требуемый коэффициент шума.

Резонансный коэффициент усиления, включая потери в циркуляторе, (в децибелах).

Требуемая полоса пропускания по уровню 3 дБ.

Относительная диэлектрическая проницаемость.

Толщина подложки.

Тангенс угла потерь.

Требуется выбрать параметрический диод и определить напряжение постоянного смещения Uсм, реальные коэффициент шума Nн и ширину полосы пропускания П0, значения холостой частоты fх и частоты накачки fн, сопротивление источника сигнала, приведенное к зажимам параметрического диода Rс, мощность генератора накачки Рн, геометрические размеры МПЛ.

Для обеспечения стабильности параметров ДПУ при изменениях импеданса цепей источника сигнала (например, антенны) и нагрузки (например, смесителя) в качестве ферритового циркулятора применим пятиплечный циркулятор, построенный на основе трех Y-циркуляторов. В таком циркуляторе потери сигнала до входа ДПУ равны

На столько же ослабляется усиленный сигнал, проходящий из ДПУ к выходу циркулятора.

Следовательно, собственно ДПУ без циркулятора (точнее, с идеальным циркулятором) с учетом заданных параметров должен иметь коэффициент шума

Резонансный коэффициент усиления ДПУ:

В децибелах

В разах

Выберем параметрический диод.

Данные параметрических диодов приведены в таблице 5.


Таблица 5.

Учитывая частотный диапазон, постоянную времени, индуктивность выводов, допустимое напряжение, стоимость выбираем параметрический диод с ТКД структурой 3А410Е. Его параметры:

Индуктивность выводов.

Конструктивная емкость диода.

Максимальная переменная емкость диода при нулевом напряжении смещения.

Постоянная времени диода.

Напряжение, при котором измерена постоянная времени.

Максимально допустимое обратное напряжение.

Контактная разность потенциалов для германиевого диода (название начинается с 1 или Г) -

k = (0.2...0.3).

Для диода из арсенида галлия (название начинается с 3 или А) - k = (1.0...1.2).

Коэффициент типа перехода (для ДБШ n = 2).

Рассчитываем необходимое напряжение смещения для диода структуры ТКД (для ДБШ расчет производят по формуле:

 

U0 = 3 Uн_обр / 8 + k / k - 1 .

Находим емкость, соответствующую рассчитанному напряжению смещения:


Постоянная времени при рабочем смещении:

Коэффициент модуляции и критическая частота диода (для ДБШ эти параметры вычисляют по формулам:

 mмод = ,

 fкр = .

Отсюда:


Поправочный коэффициент kc, учитывающий потери в конструкции ДПУ, принимаем равным:

Тогда находим:

Эквивалентная постоянная времени диода с учетом потерь в элементах конструкции ДПУ.

Эквивалентное сопротивление потерь.

Динамическая добротность диода.

Вычисляем оптимальное отношение частот Aопт и соответствующий минимальный коэффициент шума, при этом полагаем, что физическая температура диода равна нормальной температуре окружающей среды, т. е.

Тд = 290 К.

Рассчитанное значение Nпу_мин удовлетворяет требуемому Nпу = 2.2 дБ.

Определим значение холостой частоты fx. Чтобы получить максимально возможную полосу пропускания ДПУ, не применяя специальных элементов для ее расширения, и упростить топологическую схему ДПУ, в качестве холостого контура используем последовательный контур, образованный емкостью Сп_U0 и индуктивностью выводов Lв диода. Цепь тока холостой частоты замкнем разомкнутым четвертьволновым шлейфом, подключаемым параллельно диоду и имеющим входное сопротивление, близкое к нулю. В этом случае на холостой контур не влияют цепи сигнала и накачки, а также емкость корпуса диода Сд. Резонансная частота этого контура равна частоте последовательного резонанса диода:

Отношение частот

Частота накачки.

Уточненное значение коэффициента шума.

Расчет коэффициента шума ДПУ с полученным значением А дает близкую величину, что и при оптимальном отношении частот Aопт. Этот результат обусловлен тем, что значения А и Aопт близки, а кривая зависимости Nпy {А} имеет тупой минимум.

Теперь можно определить "холодный" КСВ сигнальной цепи ДПУ, который требуется обеспечить для получения заданного резонансного усиления. Также находим требуемое сопротивление источника сигнала Rc, приведенное к зажимам нелинейной емкости в последовательной эквивалентной схеме диода:

Рассчитанные значения КСВ, Rc обеспечивают подбором согласующих (трансформирующих) элементов сигнальной цепи ДПУ, что обычно выполняют экспериментально.

Определим полосу пропускания Ппу, для чего зададимся коэффициентами включения емкости в холостой mвкл_х и сигнальный mвкл_с контуры. Поскольку холостой контур имеет простейшую структуру и реализуется на сосредоточенных элементах диода и четвертьволновом разомкнутом шлейфе, можно ожидать достаточно хорошее включение емкости в контур и принять mвкл_х = 0.5. Сигнальный контур имеет более сложную структуру, так как наряду с элементами холостого контура включает в себя емкость корпуса диода Сд, согласующие шлейфы и шлейф, режектирующий частоту накачки. Поэтому примем mвкл_с = 0.2.

Тогда получим полосу пропускания:

Это значение удовлетворяет заданию (Птр = 80 МГц)

Определим необходимую мощность накачки ДПУ.

Для этого введем график вспомогательного коэффициента q в ЭВМ. Возьмем несколько точек на графике и введем их координаты

Рисунок 5.

По графику для Uнорм при n = 2 находим q и рассчитываем мощность накачки, рассеиваемую в диоде:

Мощность накачки Pнак, подводимая ко входу накачки ДПУ, обычно заметно выше мощности накачки Pнак_д, рассеиваемой в диоде. Это обусловлено неизбежными дополнительными потерями в проводниках и контактных соединениях устройства, а также некоторой утечкой мощности накачки в тракт источника сигнала, например антенны. Эти потери можно учесть с помощью поправочного коэффициента kнак. Его величина при fн < 10ГГц составляет kнак_нч = 1.5, а при fн > 50 ГГц kнак_вч = 2.5.

Для частоты fн интерполяцией значений коэффициента kнак находим:


Определяем мощность накачки, которую необходимо подвести к ДПУ:

Для упрощения тракта накачки (изъятием из него ППФ) и уменьшения тем самым его потерь, что существенно для частоты накачки fн, лежащей уже в диапазоне миллиметровых волн. целесообразно применить генератор накачки на диоде Ганна с волноводным выводом СВЧ энергии с помощью волноводно-микрополоскового перехода. Это необходимо для связи такого генератора накачки с микрополосковой платой. Согласование этого перехода осуществляют подбором диаметра и глубины погружения зонда в волновод и расстояния до его короткозамыкающей стенки.

 


Информация о работе «Расчет приемника наземной обзорной РЛС»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 46464
Количество таблиц: 0
Количество изображений: 21

Похожие работы

Скачать
51777
2
7

... году появились несколько патентов различные РЛС УВД. 1.  G01S9/56 342-37 920616 Том 1139 №3 Способ и устройство для системы воспроизведения информации наземной РЛС. Система управления воздушным движением /УВД/ содержит РЛС обнаружения, радиомаяк и общий цифровой кодер для сопровождения самолетов и устранения возможности столкновений. В процессе передачи данных на систему УВД производится ...

Скачать
45419
3
0

... обзора земли с целью обеспечения возможности автономной навигации по характерным наземным радиолокационным ориентирам.   3. Обоснование, выбор и расчет тактико-технических характеристик радиолокационной станции 3.1. Обоснование, выбор и расчет тактических характеристик РЛС 3.1.1. Максимальная дальность действия RmaxМаксимальная дальность действия задается тактическими требованиями и зависит ...

Скачать
24418
2
2

... внедрением автоматизированных систем управления воздушным движением (АС УВД), использованием последних достижений вычислительной техники, более современных радиоэлектронных средств управления воздушным движением, навигации, посадки и связи, совершенствованием методов и средств технической эксплуатации авиационной техники. Аналитический обзор аэродромных РЛС Аэродромные обзорные РЛС (ОРЛ-А) ...

Скачать
27556
0
10

... , работающих на частоте, близкой к частоте РЛС и др. Мы далее будем рассматривать только организованные (умышленные) помехи, создаваемые специально для подавления работы радиолокационных станций. Организованные помехи делятся на пассивные, создаваемые отражателями, и активные, излучаемые специальной аппаратурой. Пассивные помехи Применение пассивных помех основано на явлении отражения, или ...

0 комментариев


Наверх