4.2 Каротиноиды. Их структура, функции и физиологическая роль

Каротиноиды — жирорастворимые пигменты желтого, оранжевого, красного цвета — присутствуют в хлоропластах всех растений. Они входят также в состав хромопластов в незеленых частях растений, например в корнеплодах моркови, от латинского наименования которой (Daucus carota L.) они и получили свое название. В зеленых листьях каротиноиды обычно незаметны из-за присутствия хлорофилла, но осенью, когда хлорофилл разрушается, именно каротиноиды придают листьям характерную желтую и оранжевую окраску. Каротиноиды синтезируются также бактериями и грибами, но не животными организмами. В настоящее время известно около 400 пигментов, относящихся к этой группе.

Структура и свойства. Элементарный состав каротиноидов установил Вильштеттер. С 1920 по 1930 г. была определена структура основных пигментов этой группы. Искусственный синтез ряда каротиноидов впервые осуществлен в 1950 г. в лаборатории П. Каррера. К каротиноидам относятся три группы соединений: 1) оранжевые или красные пигменты каротины (С40Н56); 2) желтые ксантофиллы (С40H56O2 и С40H51O4);

3) каротиноидные кислоты — продукты окисления каротиноидов с укороченной цепочкой и карбоксильными группами (например, C20H24O2— кроцетин, имеющий две карбоксильные группы).

Каротины и ксантофиллы хорошо растворимы в хлороформе, бензоле, сероуглероде, ацетоне. Каротины легко растворимы в петролейном и диэтиловом эфирах, но почти нерастворимы в метаноле и этаноле. Ксантофиллы хорошо растворимы в спиртах и значительно хуже в петролейном эфире.

Все каротиноиды — полиеновые соединения. Каротиноиды первых двух групп состоят из восьми остатков изопрена, которые образуют цепь конъюгированных двойных связей. Каротиноиды могут быть ациклическими (алифатическими), моно- и бициклическими. Циклы на концах молекул каротиноидов являются производными ионона (рис. 5.5).

каротиноиды

Примером ациклического каротиноида может служить ликопин (С40Н56) — основной каротин некоторых плодов (в частности, томатов) и пурпурных бактерий.

Каротин (рис. 5.5) имеет два β-иононовых кольца (двойная связь между С5 и С6). При гидролизе β-каротина по центральной двойной связи образуются две молекулы витамина А (ретинола). α-каротин отличается от β-каротина тем, что у него одно кольцо β-иононовое, а второе — £-иононовое (двойная связь между С4 и С5).

Ксантофилл лютеин — производное a-каротина, а зеаксантин — β-каротина. Эти ксантофиллы имеют по одной гидроксильной группе в каждом иононовом кольце. Дополнительное включение в молекулу зеаксантина двух атомов кислорода по двойным связям С5—С6 (эпоксидные группы) приводит к образованию виолаксантина. Название

«виолаксантин» связано с выделением этого соединения из лепестков желтых анютиных глазок (Viola tricolor). Зеаксантин впервые получен из зерновок кукурузы (Zea mays). Лютеин (от лат. luteus — желтый) содержится, в частности, в желтке куриных яиц. К наиболее окисленным изомерам лютеина относится фукоксантин (С40Н60О6) — главный ксантофилл бурых водорослей.

Основные каротиноиды пластид высших растений и водорослей — Β-каротин, лютеин, виолаксантин и неоксантин. Каротиноиды, как и хлорофиллы, нековалентно связаны с белками и липидами фотосинтетических мембран.

Роль каротиноидов в процессах фотосинтеза. Каротиноиды — обязательные компоненты пигментных систем всех фотосинтезирующих организмов. Они выполняют ряд функций, главные из которых: 1) участие в поглощении света в качестве дополнительных пигментов, 2) защита молекул хлорофиллов от необратимого фотоокисления. Возможно, каротиноиды принимают участие в кислородном обмене при фотосинтезе.

Важное значение каротиноидов как дополнительных пигментов, поглощающих свет в синефиолетовой и синей частях спектра, становится очевидным при рассмотрении распределения энергии в спектре суммарной солнечной радиации на поверхности Земли.

Максимум радиации приходится на сине-голубую и зеленую части спектра (480 — 530 нм). В естественных условиях доходящая до поверхности Земли суммарная радиация слагается из потока прямой солнечной радиации на горизонтальную поверхность и рассеянной радиации неба. Рассеивание света в атмосфере происходит благодаря аэрозольным частицам (капли воды, пылинки и т. д.) и флуктуациям плотности воздуха (молекулярное рассеяние). Спектральный состав суммарной радиации в области 350 — 800 нм при безоблачном небе в течение дня почти не меняется. Объясняется это тем, что увеличение доли красных лучей в прямой солнечной радиации при низком стоянии Солнца сопровождается увеличением доли рассеянного света, в котором много сине-фиолетовых лучей. Атмосфера Земли в значительно большей степени рассеивает лучи коротковолновой части спектра (интенсивность рассеяния обратно пропорциональна длине волны в четвертой степени), поэтому небо выглядит голубым. При отсутствии прямого солнечного света (пасмурная погода) увеличивается доля сине-фиолетовых лучей. Эти данные указывают на важность коротковолновой части спектра при использовании наземными растениями рассеянного света и возможность участия каротиноидов в фотосинтезе в качестве дополнительных пигментов. В модельных опытах показана высокая эффективность переноса энергии света от каротиноидов к хлорофиллу а, причем этой способностью обладают молекулы каротинов, но не ксантофиллов.

Вторая функция каротиноидов — защитная. Впервые данные о том, что каротиноиды могут защищать молекулы хлорофилла от разрушения, были получены Д. И. Ивановским (1913). В его опытах пробирки, содержащие одинаковый объем раствора хлорофилла и разные концентрации каротиноидов, выставлялись на 3 ч на прямой солнечный свет. Оказалось, что чем больше каротиноидов было в пробирке, тем в меньшей степени разрушался хлорофилл. В дальнейшем эти данные получили многочисленные подтверждения. Так, бескаротиноидные мутанты хламидомонады на свету в атмосфере кислорода погибают, а в темноте при гетеротрофном способе питания нормально развиваются и размножаются. У мутанта кукурузы, у которого отсутствовал синтез каротиноидов, образующийся хлорофилл в аэробных условиях при сильном освещении быстро разрушался. В отсутствие кислорода хлорофилл не разрушался.

В настоящее время показано, что каротиноиды способны реагировать с хлорофиллом, находящимся в триплетном состоянии, предотвращая его необратимое окисление. При этом энергия триплетного возбужденного состояния хлорофилла превращается в теплоту:

реакция

Кроме этого каротиноиды, взаимодействуя с возбужденным (синглетным) кислородом, который неспецифически окисляет многие органические вещества, могут переводить его в основное состояние:

реакция2

Менее ясна роль каротиноидов в кислородном обмене при фотосинтезе. У высших растений, мхов, зеленых и бурых водорослей осуществляется светозависимое обратимое дезэпоксидирование ксантофиллов. Примером такого превращения может служить виолаксантиновый цикл:

цикл

Значение виолаксантинового цикла остается невыясненным. Возможно, он служит для устранения излишков кислорода. Каротиноиды у растений выполняют и другие функции, не связанные с фотосинтезом. В светочувствительных «глазках» одноклеточных жгутиковых и в верхушках побегов высших растений каротиноиды, контрастируя свет, способствуют определению его направления. Это необходимо для фототаксисов у жгутиковых и фототропизмов у высших растений.

Каротиноиды обусловливают цвет лепестков и плодов у некоторых растений Производные каротиноидов — витамин А, ксантоксин, действующий подобно АБК, и другие биологически активные соединения. Хромопротеин родопсин, обнаруженный у некоторых галофильных бактерий, поглощая свет, функционирует в качестве Н+-помпы. Хромофорной группой бактериородопсина является ретиналь — альдегидная форма витамина А. Бактериородопсин аналогичен родопсину зрительных анализаторов животных.

 


Информация о работе «Фотосинтез как основа энергетики биосферы»
Раздел: Биология
Количество знаков с пробелами: 135019
Количество таблиц: 0
Количество изображений: 23

Похожие работы

Скачать
24078
0
0

... в трофических цепях. Именно в круговоротах биогенных химических элементов, по мнению В.И. Вернадского, заключается геологическая роль живого вещества планеты. Живые организмы формируют не только биологический, но и геологический лик планеты. Важной идеей В.И. Вернадского была мысль о космической роли живого вещества, которая заключается в аккумулировании солнечной энергии и преобразовании ее в ...

Скачать
87142
4
4

... период многие страны приняли решение о полном или постепенном отказе от развития атомной энергетики. 1.3 Особенности альтернативной водородной энергетики Водородная энергетика включает следующие основные направления: Разработка эффективных методов и процессов крупномасштабного получения дешевого водорода из метана и сероводородсодержащего природного газа, а также на базе разложения воды; ...

Скачать
34216
0
0

... взаимодействия – зависимость организма от среды – была полно раскрыта от Ламарка до Мичурина. Но обратное явление – отражение жизни на среде – почти не привлекало внимание до В.И.Вернадского. Указывая, что связь живого и неживого в биосфере является взаимной, ученый писал: «Организм имеет дело со средой, к которой он не только приспособлен, но которая приспособлена и к нему». Конечно, здесь ...

Скачать
178236
13
9

... голоса, слушают пение птиц, плеск волн и шум ветра, дышат свежим воздухом. Воспользоваться таким транспортом захочет каждый, кто любит совершать водные путешествия. 6.  РОССИЯ, УКРАИНА И СОЛНЕЧНАЯ ЭНЕРГЕТИКА  В России в настоящее время имеется восемь предприятий, имеющих технологии и производственные мощности для изготовления 2 МВт солнечных элементов и модулей в год. В 1992 году на ...

0 комментариев


Наверх