3. Среди n лотерейных билетов k выигрышных. Наудачу взяли m билетов. Определить вероятность того, что среди m билетов l выигрышных.

Дано: n = 10, l = 5, m =7 , k = 7.

Решение.

Пусть событие А - среди 7 билетов 5 выигрышных. Вероятность события А находим с помощью классического определения вероятности:


 ,

где: m – число исходов, благоприятствующих появлению события А, n – общее число равновозможных исходов испытания.

Находим m. Из 7 выигрышных билетов 5 билета можно выбрать  способами, а 2 безвыигрышных билетов из 3 билетов можно выбрать  способами. Тогда число исходов, благоприятствующих появлению события А, используя теорему умножения, будет равно:

m = ×=

Находим n. . Из 10 билетов 7 билета можно выбрать  способами, тогда

n =

Отсюда, искомая вероятность равна:

Ответ: Р(А) = 0,525.

4. В лифт k-этажного дома сели n пассажиров (n < k). Каждый независимо от других с одинаковой вероятностью может выйти на любом (начиная со второго) этаже. Определить вероятность того, что: а)все вышли на разных этажах; б) по крайней мере двое сошли на одном этаже.

Дано: k = 7, n = 4.

Решение.

а) Событие А – все пассажиры вышли на разных этажах.

Событие А1 – первый пассажир вышел на любом из шести, кроме первого, этаже.

Событие А2 – второй пассажир вышел на любом из оставшихся пяти этаже, т.е. кроме первого и этажа, на котором вышел первый пассажир.

Событие А3 – третий пассажир вышел на любом из оставшихся четырех этаже, т.е. кроме первого и этажей, на которых вышли первый и второй пассажиры.

Событие А4 – четвертый пассажир вышел на любом из оставшихся трех этаже, т.е. кроме первого и этажей, на которых вышли первый, второй и третий пассажиры.

Вероятность события А находим по теореме умножения, поскольку события А1, А2, А3, А4 являются зависимыми. Тогда:

где: , , , .

Отсюда:

.

б) Событие В – по крайней мере двое сошли на одном этаже.

Событие В1 – первый пассажир вышел на любом из шести, кроме первого, этаже.

Событие В2 – второй пассажир вышел на любом из оставшихся пяти этаже, т.е. кроме первого и этажа, на котором вышел первый пассажир.

Событие В3 – третий пассажир вышел на любом из оставшихся четырех этаже, т.е. кроме первого и этажей, на которых вышли первый и второй пассажиры.

Событие В4 – четвертый пассажир вышел на любом из трех этаже, на которых вышли первый, второй и третий пассажиры.

Вероятность события В находим по теореме умножения, поскольку события В1, В2, В3, В4 являются зависимыми. Тогда:

где: , , , .

Отсюда:

.

Ответ: а) 0,2778; б) 0,2778.

5. В двух партиях К1 и К2 % доброкачественных изделий на удачу выбирают по одному изделию из каждой партии Какова вероятность того, что среди двух изделий:

а) хотя бы одно бракованное;

б) два бракованных;

в) одно бракованное и одно доброкачественное.

Дано: К1 = 39%, К2 = 78%.

Решение.

Обозначим события:

Событие А – из первой партии наудачу вынули доброкачественное изделие;

Событие B - из второй партии наудачу вынули доброкачественное изделие

Вероятности этих событий соответственно равны: р1 = 0,39 и р2 = 0,78.

а) Пусть событий С – среди двух изделий хотя бы одно бракованное.

Рассмотрим противоположное событие  - среди двух изделий нет бракованных, то есть эти два изделия доброкачественные. Вероятность события  находим, используя теорему умножения:

Р() = р1 · р2 = 0,39 · 0,78 = 0,3042

Отсюда, вероятность искомого события Р(С) найдём по формуле:

Р(С) = 1 - Р() = 1 – 0,3042 = 0,6958.

б) Пусть событий D – среди двух изделий два бракованных.

Вероятность события D находим, используя теорему умножения:

Р(D) = q1 · q2 = (1 - р1) · (1 - р2) = (1 - 0,39)·(1 - 0,78) = 0,1342.

в) Пусть событий Е - одно бракованное и одно доброкачественное. Здесь необходимо рассмотреть два события: Событие  - из первой партии вынули доброкачественное изделия, а из второй – бракованное; Событие  - из первой партии вынули бракованное изделие, а из второй – доброкачественное.

Тогда:

Е = +

или Р(Е) = Р() + Р()

Вероятность события Е находим, используя теорему сложения и умножения:

Р(Е) = р1 · q2 + q1 · р2 = 0,39 · 0,22 + 0,61 · 0,78 = 0,5616


Ответ: а) 0,6958; б) 0,1342; в) 0,5616.

6. Вероятность того, что цель поражена при одном выстреле: первым стрелком равна P1 = 0,39, а вторым стрелком - P2 = 0,45. Первый стрелок сделал n1 = 3 выстрелов, а второй стрелок – n2 = 2 выстрелов. Определить Вероятность того, что цель не поражена.

Решение.

Пусть событие А - цель не поражена. Чтобы цель была не поражена, необходимо, чтобы первый стрелок, сделав 3 выстрела, ни разу не попал, и, чтобы второй стрелок, сделав 2 выстрела, тоже ни разу не попал.

Рассмотрим гипотезы:

Событие А1 – первый стрелок промахнулся 3 раза.

Событие А2  - второй стрелок промахнулся 2 раза.

Вероятность того, что первый стрелок промахнется при одном выстреле равна:

q1 = 1 - p1 = 1- 0,39 = 0,61,

а вероятность того, что второй стрелок промахнется при одном выстреле равна: q2 = 1 - p2 = 1- 0,45=0,55.

Тогда вероятность событий А1 и А2 находим по формуле Бернулли:

Тогда:


Тогда искомая вероятность события А, используя теорему умножения, равна:

Р(А) = Р(А1)×Р(А2) = 0,227 · 0,3025 = 0,0687.

Ответ: 0,0687.

7. Из  ламп ni принадлежат i партии (i = 1, 2, 3) бракованные лампы в первой партии составляют 6%, во второй – 5%, а в третьей – 4%. Наудачу выбирается одна лампа. Определить вероятность того, что выбранная лампа - бракованная.

Дано: n1 = 620, n2 = 190.

Решение.

Испытание состоит в том, что наудачу выбирают одну лампу.

Пусть событие А - выбранная лампа – бракованная. Рассмотрим гипотезы:

Событие Н1 – выбранная лампа принадлежит 1 партии,

Событие Н2 – выбранная лампа принадлежит 2 партии,

Событие Н3 – выбранная лампа принадлежит 3 партии.

Вероятность события А находим по формуле полной вероятности:

Определяем вероятности гипотез Н1, Н2, Н3 с помощью классического определения вероятности:

 ,


Для события Н1 имеем: m1 = 620 (количество ламп в первой партии), n =1000 (общее количество ламп); тогда вероятность события Н1 равна:

Аналогично находим вероятности гипотез Н2 и Н3.

Для события Н2 имеем: m2 = 190, n =1000.

Для события Н3 имеем: m3 = 1000 - m1  – m2 = 1000 – 620 –190 = 190, n =1000.

Контроль:

Находим условные вероятности события А при условии, что события Н1, Н2, Н3 соответственно наступили, то есть вероятности , и , по формуле:

где: ki – число процентов бракованных ламп в i партии. Тогда


Подставляя найденные вероятности в формулу полной вероятности, находим вероятность события А:

 =

= 0,62 · 0,06 + 0,19 · 0,05 + 0,19 · 0,04 = 0,0543.

Ответ: Р(А) = 0,0543.

8. В первой урне N1 белых и M1 чёрных шаров, во второй N2 белых и M2 чёрных шаров. Из первой урны во вторую переложили К шаров, затем из второй урны извлечен один шар. Определить вероятность того, что выбранный из второй урны шар – белый.

Дано: N1 = 20, M1 = 1, N2 = 40, M2 = 7, К = 15.

Решение.

Испытание состоит в том, что наудачу выбирают из второй урны шар после перекладывания из первой урны во вторую 15 шаров.

Пусть событие А - выбранный шар – белый.

Рассмотрим гипотезы:

Событие Н1 – из первой урны во вторую переложили 15 шаров, среди которых 15 белых и ни одного чёрного;

Событие Н2 – из первой урны во вторую переложили 15 шаров, среди которых 14 белых и 1 чёрный; Так как события Н1, Н2 образуют полную группу событий, и событие А может произойти с одним из этих событий, вероятность события А находим по формуле полной вероятности:


Определяем вероятности гипотез Н1, Н2 с помощью классического определения вероятности:

 ,

где: mi – число исходов, благоприятствующих появлению события Hi, n – общее число равновозможных исходов испытания.

В первой урне находится (N1 + M1) = 20+1 =21 шар, тогда общее число равновозможных исходов испытания равняется числу способов, которыми можно вынуть 15 шаров из 21, то есть

n =

Находим вероятность гипотезы Н1. 15 белых шаров из 20 можно выбрать  способами, а 0 чёрных из 1 -  способами, тогда число исходов, благоприятствующих появлению события Н1, используя теорему умножения, будет равно:

m = ×=

Отсюда, вероятность события Н1 равна:


Аналогично находим вероятности гипотез Н2.

Для события Н2 имеем:

m2=×=

Отсюда, вероятность события Н2 равна:

Контроль:

Находим условные вероятности события А при условии, что события Н1, Н2 соответственно наступили, то есть вероятности ,  с помощью классического определения вероятности:

 ,

где: mi – число исходов, благоприятствующих появлению события А при условии, что событие Нi соответственно наступило; n – общее число равновозможных исходов испытания.

При наступлении события Н1 во второй урне станет (40+15)=55 белых и 7 чёрных шаров, всего в урне 62 шара, тогда для события A | Н1 имеем:

m1 = 55, a n = 62, отсюда


При наступлении события Н2 во второй урне станет (40+14)=54 белых и (7+1)=8 чёрных шаров, всего в урне 62 шаров, тогда для события A | Н2 имеем:

m2 = 54, a n = 62, отсюда

Таким образом, подставляя найденные вероятности в формулу полной вероятности, находим вероятность события А:

=0,2857×0,8871 + 0,7143×0,871 = 0,8756

Ответ: Р(А) = 0,8756.

9. В альбоме k чистых и l гашеных марок. Из них наудачу извлекаются m марок (среди которых могут быть и чистые, и гашенные), подвергаются спецгашению и возвращаются в альбом. После этого вновь наудачу извлекаются n марок. Определить вероятность того, что все n марки - чистые.

Дано: k = 7, l = 5, m = 2, n = 2.

Решение.

Испытание состоит в том, что наудачу выбирают из альбома после гашения 2 марки.

Пусть событие А - все 2 марки - чистые.

Рассмотрим гипотезы:

Событие Н1 – из альбома извлекли и подвергли спецгашению 2 чистые и ни одной гашеной марки;

Событие Н2 – из альбома извлекли и подвергли спецгашению 1 чистую и 1 гашеную марки;

Событие Н3 – из альбома извлекли и подвергли спецгашению ни одной чистой и 2 гашеные марки.

Так как события Н1, Н2, Н3 образуют полную группу событий, и событие А может произойти с одним из этих событий, вероятность события А находим по формуле полной вероятности:

Определяем вероятности гипотез Н1, Н2, Н3 с помощью классического определения вероятности:

,

где: mi – число исходов, благоприятствующих появлению события Hi, n – общее число равновозможных исходов испытания.

Из альбома можно вынуть 2 марки из (k + l) = (7 + 5) = 12 марок -  способами, тогда общее число равновозможных исходов испытания равно:

n =

Находим вероятность гипотезы Н1 2 чистые марки из 7 можно выбрать  способами, а 0 гашенных из 5 -  способами, тогда число исходов, благоприятствующих появлению события Н1, используя теорему умножения, будет равно:


m = ×=

Отсюда, вероятность события Н1 равна:

Аналогично находим вероятности гипотез Н2 и Н3:

Для события Н2 имеем:

m2=×=

Отсюда, вероятность события Н2 равна:

Для события Н3 имеем:

m3=×=

Отсюда, вероятность события Н3 равна:

Контроль:


Находим условные вероятности события А при условии, что события Н1, Н2, Н3 соответственно наступили, то есть вероятности , и  с помощью классического определения вероятности:

 ,

где: mi – число исходов, благоприятствующих появлению события А при условии, что событие Нi соответственно наступило; n – общее число равновозможных исходов испытания.

При наступлении события Н1 в альбоме станет (7-2)=5 чистых и (5+2)=7 гашеных марок, всего в альбоме 12 марок, тогда для события A | Н1 имеем: m1 =  - число способов, которыми можно выбрать 2 чистых марки из 5. n =  - число способов, которыми можно выбрать 2 марки из 12.

Отсюда

При наступлении события Н2 в альбоме станет (7-1)=6 чистых и (5+1)=6 гашеных марок, всего в альбоме 12 марок, тогда для события A | Н2 имеем: m2 =  - число способов, которыми можно выбрать 2 чистых марки из 6. n =  - число способов, которыми можно выбрать 2 марки из 12.

Отсюда

При наступлении события Н3 в альбоме станет (7-0)=7 чистых и (5+0)=5 гашеных марок, всего в альбоме 12 марок, тогда для события A | Н3 имеем: m3 =  - число способов, которыми можно выбрать 2 чистых марки из 7. n =  - число способов, которыми можно выбрать 2 марки из 12.

Отсюда

Таким образом, подставляя найденные вероятности в формулу полной вероятности, находим вероятность события А:

= 0,3182 · 0,1515 + 0,5303 · 0,2273 + 0,1515 · 0,3182 = 0,217.

Ответ: Р(А) = 0,217.

10. В магазин поступают однотипные изделия с 3-х заводов, причем i–й завод поставляет mi% изделий. Среди изделий i–го завода ni % - первосортных. Куплено одно изделие. Оно оказалось первосортным. Найти вероятность того, что купленное изделие выпущено j-м заводом?

Дано: m1 = 60%, m2 = 10%, m3 = 30%, n1 = 80%, n2 = 90%, n3 = 80%, j = 3.

Решение.

Испытание состоит в том, что наудачу покупают одно изделие.

Рассмотрим событие А – изделие оказалось первосортным.

Рассмотрим гипотезы:

Событие H1 – наудачу купленное изделие изготовлено на 1-ом заводе.

Событие H2 – наудачу купленное изделие изготовлено на 2-ом заводе.

Событие H3 – наудачу купленное изделие изготовлено на 3-ем заводе.

По условию задачи необходимо найти вероятность события Н3|А, то есть события состоящего в том, что наудачу купленное изделие изготовлено на 3-ем заводе, если известно, что она первосортное.

Так как события H1, H2 и H3 образуют полную группу событий, и событие А может наступить с одним из этих событий, то для нахождения вероятности события  воспользуемся формулой Байеса:

 ,

где полная вероятность события А, которая может быть определена по формуле полной вероятности:

Определяем вероятности гипотез Н1, Н2, Н3 с помощью классического определения вероятности:

,

где: mi – число исходов, благоприятствующих появлению события Hi, n – общее число равновозможных исходов испытания.

Для события Н1 имеем: m1 = 60% (количество изделий, изготовленных на 1-ом заводе), n = 100% (общее количество изделий); тогда вероятность события Н1 равна:

Аналогично находим вероятности гипотез Н2 и Н3.

Для события Н2 имеем: m2 = 10% (количество изделий, изготовленных на 2-ом заводе), n = 100% (общее количество изделий); тогда вероятность события Н2 равна:

Для события Н3 имеем: m3 = 30% (количество изделий, изготовленных на 3-ем заводе), n = 100% (общее количество изделий); тогда вероятность события Н3 равна:

Контроль:

Находим условные вероятности события А при условии, что события Н1, Н2, Н3 соответственно наступили, то есть вероятности , и , по формуле:


где: ki –число стандартных изделий, изготовленных на i – заводе, mi – общее число изделий, изготовленных на i – заводе. Тогда

Таким образом, подставляя найденные вероятности в формулу полной вероятности, находим вероятность события А:

 =

= 0,6 × 0,8 + 0,1 × 0,9 + 0,3 × 0,8 = 0,81.

Отсюда, по формуле Байеса получим: .

Ответ: .


Информация о работе «Типовой расчет»
Раздел: Математика
Количество знаков с пробелами: 20707
Количество таблиц: 2
Количество изображений: 0

Похожие работы

Скачать
17034
46
23

... vij матрицы весов. Используя венгерский алгоритм, найти совершенное паросочетание минимального (максимального веса). Выполнить рисунок. Матрица весов двудольного графа K55 :   y1 y2 y3 y4 y5 x1 2 0 0 0 0 x2 0 7 9 8 6 x3 0 1 3 2 2 x4 0 8 7 6 4 x5 0 7 6 8 3 Первый этап - получение нулей не нужен, т. к. нули уже есть во всех строк и столбцах. Второй этап - ...

Скачать
23495
4
3

... в каждом конкретном случае исходя из габаритов проектируемого технического оборудования, места расположения насосной станции и рабочих органов машины, способов монтажа гидрооборудования и других условий. Для технологического оборудования малых и средних типоразмеров можно принять длины участков в следующих пределах: всасывающий трубопровод- до 1 метра, напорный и сливной до 5 метров. Для ...

Скачать
8147
0
3

... м3/с Vг = Мг/rг = 0,9/0,9 = 1 м3/с Кт = 10662855 + 300×103(8,65×10-4/1) = 10663114 Па Определяем эффективность скруббера Вентури Эффективность скруббера Вентури, полученная в результате расчетов (величина ), удовлетворяет заданному условию, т.е. обеспечивает очистку газов от пыли с эффективностью не менее 0.9. Рис. 2.1 Скруббер Вентури 1 – форсунки 2 – сопло 3 – ...

Скачать
14035
2
4

... нефтепровода, м 25 ρ - средняя плотность, т/м3 0,870 P1 - давление насосной станции, кгс/см2 46 P2 - давление в конце участка, кгс/см2 1,5 δ - толщина стенки, мм 14 Таблица 2 - Данные для прочностного расчета Параметры Вариант 3 Dн - диаметр трубопровода наружный, мм 1220 Марка стали 12 Г2СБ t0 - температура при сварке замыкающего стыка, 0с ...

0 комментариев


Наверх