6. Исследуем функцию на возрастание, убывание и экстремум. Для этого найдем производную функции.

Из  получаем , откуда , .

+ _ +

______________________________________ x

-3 11

Так как на интервалах  и  производная положительна, т.е. , то график функции на указанных интервалах возрастает. Так как на интервале  производная отрицательна, т.е. , то на указанном интервале график функции убывает.

Так как при переходе через точки ,  производная функции меняет знаки и эти точки входят в область определения функции, то ,  - точки локального экстремума. Причем точка локального минимума:  (так как при переходе через нее производная меняет знак с "+" на "-");  - точка локального максимума:  (так как при переходе через нее производная меняет знак с "-" на "+").

7. Исследуем график функции на выпуклость, вогнутость и определим точки перегиба. Для этого найдем вторую производную функции.

Очевидно, что в интервале  вторая производная меньше нуля, т.е. , и в этом интервале график функции является выпуклым вверх. В интервале  вторая производная больше нуля, т.е. , и в этом интервале график функции является выпуклым вниз (вогнутым).

Несмотря на то, что при переходе через точку  вторая производная меняет знак, она не является точкой перегиба, так как  не входит в область определения функции, т.е. функция в ней не определена. Таким образом, точек перегиба у графика функции нет.

Из  получаем , откуда , .

+ _ +

______________________________________ x

-3 11

Так как на интервалах  и  производная положительна, т.е. , то график функции на указанных интервалах возрастает. Так как на интервале  производная отрицательна, т.е. , то на указанном интервале график функции убывает.

Так как при переходе через точки ,  производная функции меняет знаки и эти точки входят в область определения функции, то ,  - точки локального экстремума. Причем точка локального минимума:  (так как при переходе через нее производная меняет знак с "+" на "-");  - точка локального максимума:  (так как при переходе через нее производная меняет знак с "-" на "+").

4. Неопределенный интеграл

Часто возникает задача, обратная той, которая решалась в дифференциальном исчислении, а именно: дана функция , найти функцию , такую, что .

Функция  называется первообразной для данной функции  на некотором промежутке Х, если для любого  выполняется равенство

.

Например, пусть , тогда за первообразную можно взять , поскольку .

В основе интегрального исчисления лежит теорема об общем виде первообразной: если  – первообразная для функции  на промежутке Х, то все первообразные для функции  имеют вид , где С – произвольная постоянная.

Выражение вида  описывает все первообразные для функции . Действительно, для любой постоянной С

.

Пусть наряду с данной первообразной  функция  – также первообразная для . Тогда должны выполняться равенства

,

откуда . Следовательно, разность этих первообразных будет тождественно равна константе  или .

Действие нахождения первообразной называется интегрированием функции.

Доказанная теорема позволяет ввести основное понятие интегрального исчисления: если  – первообразная для , то совокупность функций , где С – произвольная постоянная, называется неопределенным интегралом от функции , который обозначается следующим образом

.

Геометрически неопределенный интеграл представляет собой семейство плоских кривых , называемых интегральными.

Для того, чтобы проверить, правильно ли выполнено интегрирование, надо взять производную от результата и убедиться, что получена подынтегральная функция . Как всякая обратная операция, интегрирование – более сложное действие, чем дифференцирование.

Приведем основные свойства неопределенного интеграла:

1. производная неопределенного интеграла равна подынтегральной функции

;

2. неопределенный интеграл от алгебраической суммы функций равен сумме интегралов от слагаемых функций

;

3. постоянный множитель можно выносить за знак неопределенного интеграла

.

Значения интегралов от основных элементарных функций получаются из формул дифференцирования этих функций. Приведем таблицу основных интегралов:

1) ;

7) ;

2) ;

8) ;

3) ;

9) ;

4) ;

10)

5) ;

11) ;

6) ;

12) .

Интегралы, содержащиеся в этой таблице, называются табличными.

Пример. Найти неопределенный интеграл. Результат интегрирования проверить дифференцированием

Решение: Для нахождения неопределенных интегралов можно воспользоваться как методом замены переменной, так и методом внесения под знак дифференциала. Покажем оба метода.

1. Воспользуемся методом замены переменной. Введем новую переменную t по формуле . Тогда  или . Тогда

После замены переменной воспользовались свойством неопределенного интеграла: постоянный множитель  можно выносить за знак неопределенного интеграла, и так как , то пришли к табличному интегралу , где  и .

2. Решим этот пример методом внесения под знак дифференциала. Замечая, что  и то, что подынтегральное выражение можно представить в виде

,

внесем под знак дифференциала . Для этого выпишем дифференциал этой функции . Тогда

После внесения под знак дифференциала функции  пришли к табличному интегралу , где  и .


Информация о работе «Производная, дифференциал и интеграл»
Раздел: Математика
Количество знаков с пробелами: 18962
Количество таблиц: 4
Количество изображений: 6

Похожие работы

Скачать
22351
0
8

... дробей m и n; 2)    если  Z, то используется подстановка: a+bxn=ts, где s – знаменатель дроби 3)    если  Z, то применяется подстановка: ax-n+b=ts, где s – знаменатель дроби 9.    Понятие определенного интеграла, его геометрический смысл. Определение. Если существует конечный передел интегральной суммы (8)  - (8) при λ→0, не зависящий от способа разбиения &# ...

Скачать
16141
0
0

... элементарной функцией, то первообразная от элементарной функции может оказаться и не представимой с помощью конечного числа элементарных функций. Из определения 2 следует: 1.Производная от неопределенного интеграла равна подынтегральной функции, т.е.если F′ (x)= f(x), то и  (∫ f(x)dx)′= (F(x)+C)′=f(x). (4) Последнее равенство нужно понимать в том смысле, что ...

Скачать
27370
0
5

... по алгебре и началам анализа, при подготовке к государственной итоговой аттестации, внешнему независимому оцениванию. Достаточно большое число задач раскрывают потенциальные возможности анализа бесконечно малых величин. 1. Производная и ее применение для решения прикладных задач 1.1 Исторические сведения Ряд задач дифференциального исчисления был решен еще в древности. Они встречались у ...

Скачать
10727
0
0

... в потенциальную, и обратно. Но на рубеже 17-18 веков никто не догадался, что именно законы сохранения составляют следующий по глубине слой природных закономерностей. Их понимание потребовало новой революции в математике: изучения природных симметрий с помощью теории групп. Ее создание и применение заняло весь 19 век и большую часть 20 века. Предугадать такое развитие математики Ньютон не мог - ...

0 комментариев


Наверх