Особенности вертикального распределения температуры воды по глубине реки на локальных участках

139337
знаков
24
таблицы
25
изображений

4. Особенности вертикального распределения температуры воды по глубине реки на локальных участках

Из существующего представления о высокой интенсивности турбулентного перемешивания следует вывод об однородности температуры воды по глубине рек. Он не имеет основания, поскольку вертикальное изменение температуры в большинстве случаев незначительно. Тем не менее, тепловые состояния водотока на разных глубинах не является абсолютно однородным.

Если температуру воды рассматривать в качестве консервативной примеси, то время ее выравнивания (после локального и мгновенного изменения на поверхности) по глубине потока  (Fischer, 1973), где  – коэффициент турбулентной диффузии, , - время Лагранжа, - время завершения процесса смешения по глубине потока. Источником изменения поля температур в локальной точке водного потока или в локальном створе может быть при впадении притоков, отведение подогретых вод, сброс воды из водохранилища, отличающейся по тепловым характеристикам. Неоднородность вертикальной структуры поля температуры существует на небольшом участке ниже места резкого изменения температуры. Его длина зависит от соотношения средней глубины, скорости потока и :  (Кондюрина, 2000). Условие  означает, что ниже источника примеси достигнута вертикальная однородность температуры воды.

Оценка масштабов неоднородности температуры воды по глубине реки затруднена несовершенством технических средств для измерения этой характеристики. Поэтому существование вертикальной неоднородности температуры воды подвергалось сомнению. В начале прошлого века обсуждался, например «закон равномерного распределения температуры в реках» во все сезоны года (Максимович, 1900; Альтберг, 1916). Однако измерения Ф.И. Быдина (1933), Л.А. Ячевского (1916), В.М. Сокольникова (1935), О.В. Ванеевой и М.Н. Панкратьевой (1941), Соколовой (1951), и др. показали, что основания для выделения такого закона нет, температура воды неодинакова по глубине рек.

4.1 Характеристика полевых данных

Тем не менее, данных о реальном распределении температуры воды по глубине потока очень мало, поскольку проведение таких исследований требует специального оборудования и значительных затрат времени. Наиболее детальны и убедительны данные о вертикальном распределении температуры воды, полученные Л.А. Ячевским (1916) на р. Неве с 4 июня до 2 июля 1915 г. (пример табл. 4.1, см. приложение №4) при изучении условий формирования донного льда. Измерения температуры воды проводились ртутными термометрами с точностью 0,010С, с плота, установленного на якорях, в 50 метрах от берега, на одной вертикали и на глубинах 0,05 м, 0,5, 1, 2 и 2,5 м. Измерения выполнялись на 1,8–1,9 км выше ответвления Большой Невы от р. Невы. Одновременно проводились наблюдения за облачностью и температурой воздуха. Значения температуры снимались в 1:00, 3:00, 5:00, 7:00, 13:00, 21:00 и 23:00, что связано с проверкой гипотезы Л.А. Ячевского о влиянии облачности и температуры воздуха на образование донного льда.

Таблица 4.1. Фрагмент базы данных по температуре р. Нева в 1915 г.

температура воды, 0С на глубине, м.

Дата и время

температура воздуха, 0С

0,05 0,5 1 2 2,5
04.06.15 1:00 14,3 - - 16,2 16,12 16,2
04.06.15 3:00 11,8 - - 16,1 16,07 16,03
04.06.15 5:00 12,6 - - 16 16 16
04.06.15 7:00 14,5 - - 16,1 16,1 16,1
04.06.15 13:00 17,4 - - 16,6 16,52 16,55
04.06.15 21:00 16,4 - - 16,42 16,2 16,4
04.06.15 23:00 14,5 - - 16,22 16,21 16,2

Достаточно детальные измерения вертикального распределения температуры проведены автором на р. Оке летом 2007 г. (табл. 4.2) в районе д. Трегубово (Озерский район Московской обл.). Измерения температуры воды на вертикалях производились вертушкой Нертока фирмы «Valeport», имеющей функции измерения скорости (м/с), направления течения, температуры воды (с точностью до 0,010С) и давления (мбар). Этот прибор позволяет выставлять время осреднения измерений от 1 с до 99 минут и устанавливать «ноль» давления, что обеспечивает более точно расположение вертушки на вертикали. Поскольку вертушка Нертока неинерционная, то осреднение, использованное во время измерений, составляет 1 мин. Вертикали делались на расстоянии 5–10 м от берега и далее по поперечному сечению реки через каждые 50 м. Точки измерений засекались с помощью GPS. На вертикали измерения температуры воды производились на глубинах 0,1 м, 0,5 м, 1 м, и далее через 1 м до дна. Измерения проводились в солнечную погоду, в различное время светлой части суток.

Таблица 4.2. Фрагмент базы данных автора по измерениям температуры воды в р. Ока

Координаты вертикали Дата Время

Температура, 0С

Глубина, м Скорость течения, м/с
N E

54055'5,9''

38045'2,1''

18–06–07 16:39:22 23,39 0,17 0,443
18–06–07 16:40:22 23,35 0,56 0,448
18–06–07 16:41:22 23,30 1,00 0,452
18–06–07 16:42:22 23,27 1,97 0,409
18–06–07 16:43:22 23,27 3,03 0,378
18–06–07 16:44:22 23,26 3,39 0,27

Измерения проводились в 4-х поперечных сечениях реки. Один из них располагался на участке одиночного разветвления (рис. 4.1, 1), в правом рукаве с 13:11 по 13:52, в левом рукаве – с 18:50 по 19:41. В левом рукаве (В=95 м, B/h=63), вертикали назначались в среднем каждые 16 м. Измерения проведены на 6 вертикалях. Русло левого рукава заросшее, больше половины ширины рукава занято водной растительностью. В правом рукаве (В=231 м, B/h=195), вертикали располагались каждые 21 м. Измерения здесь выполнены на 9 вертикалях. Весь день (17.06.2007) была солнечная погода, θвозд=24–300С, вода в реке за день нагрелась на 10С (по данным наблюдений на водомерном посту).

На втором, третьем и четвертом поперечных профилях измерения выполнены в один день (18.06.07) в фазу дневного нагревания (с 16:39 до 20:11) при солнечной погоде и температуре воздуха θвозд=24–300С.

Рис. 4.1. Схема участка р. Ока с расположением створов наблюдений

Второй профиль располагался на 100 м выше подводного руслового карьера (В=270 м, B/h=144). Водное пространство по левому берегу покрыто кувшинками, занято тростником. По ширине профиля вертикали назначались в среднем через каждые 27 м. Наблюдения проведены на 7 вертикалях.

Третий профиль располагался на верхней границе карьера: на одной из вертикалей глубиной до 10 м (В=260, B/h=67) измерялись температуры воды. Измерения на вертикалях проводились в среднем через 33 м. Всего изучались эпюры 6 вертикалей.

Четвертый профиль пересекал карьер в створе, ширина которого составляла В=250 м (B/h=55,3). Измерения на вертикалях проводились в среднем через 28 м. Всего анализировалось 6 вертикалей.

Дополнительные материалы автором получены летом 2008 на р. Протва в районе д. Сатино (Калужская обл.) с помощью комплексного зонда YSI (рис. 4.2). Наблюдения проводились в различных морфологических и динамических условиях. Измерения температуры выполнены на нескольких вертикалях в пределах каждого створ реки. Измерения на всех вертикалях осуществлялись на разных глубинах (0,1, 0,5, 1 м и далее через 1 м до дна). Один створ расположился в плесе (табл. 4.3), другой – на перекате. Измерения проводились 02.07.2008 в дневные часы в солнечную погоду. Ширина плеса B составляла 20 м, средняя глубина hср= 1,05 м. Ширина переката B=45 м, средняя глубина hср= 0,35 м.

Сатино-2008-15 028

Рис. 4.2. Комплексный зонд YSI


Несколько распределений температуры по глубине были изучены 03.07.2008. Они располагались в зоне слияния р. Исьма и р. Протва в соответствии со схемой на рис. 4.3. Работы проводились в солнечную погоду при температуре воздуха 24–280С с 10:30 до 18:00. Результаты наблюдений приведены в Приложении №4. Температура воды в Протве в период измерений в узле ее слияния с р. Исьма (рис. 4.4) составляла θ = 20,3–20,9 0С, в Исьме – θ = 16,6 – 17,10С. Поэтому особенности температурных эпюр изначально соответствовали условиям формирования теплового состояния воды Исьмы, Протвы и зоны смешения водных масс этих рек.

Измерения температуры воды на вертикалях в узле слияния Исьмы и Протвы проводились в основном на стандартных горизонтах: 0,1 м, 0,5 м, 1 м и далее до дна через 1 м. На профиле 6 и в точках 4,5,6 профиля 5 (рис. 4.2) измерения выполнялись также на глубине 0,03 см с целью оценить изменение температуры в приповерхностном слое воды.

Рис. 4.3. Район проведения исследования поля температуры в области слияния рр. Протва и Исьма.


PICT6076

Рис. 4.4. Узел слияния рр. Протвы и Исьмы в июле 2008 г.

Таблица 4.3. Результаты измерений температуры в плесе р. Протвы 2008 г.

№ вертикали Глубина, м

Температура, 0С

Расстояние от л.б.
1 0,1 17,88 0,5
0,7 17,85
2 0,1 17,83 6,5
0,6 17,82
1 17,82
1,8 17,82
3 0,1 17,85 10,5
0,5 17,85
1 17,85
1,3 17,85
4 0,1 17,89 12,5
0,5 17,88
0,95 17,89
5 0,1 17,89 19,5
0,4 17,89


Информация о работе «Особенности термического режима рек»
Раздел: Геология
Количество знаков с пробелами: 139337
Количество таблиц: 24
Количество изображений: 25

Похожие работы

Скачать
224699
13
7

... в предсказании краткосрочных процессов (на 10-15 лет), что связано с отсутствием необходимых материалов о состоянии компонентов экосистем и процессах их эволюционных и циклических изменений.   1.4 Экономические последствия строительства и эксплуатации водохранилищ   1.4.1 Воздействие ГТС на земельные ресурсы Изменения, вносимые созданием и эксплуатацией ГТС в режим водотока, как и изменения, ...

Скачать
49958
1
0

... и хищниками. Прежде всего, поедаются более крупные, т.е. более заметные, рачки. Иначе говоря, хищничество носит избирательный характер.[7] Глава 3. Ресурсы и охрана озёр   3.1 Природные ресурсы   Озера таят в себе огромные богатства. Озера – это запасы пресной воды и рыбы, добыча полезных ископаемых и транспортные перевозки, источники электроэнергии и курорты. Пресноводные озера являются ...

Скачать
42773
0
2

... СТС, 9- уровень подземных вод, 10- направление движения подземных вод, 11- буровые скважины В южных районах криолитозоны (при островном расположении ММП) неконтактирующие подземные воды отделены от подошвы мерзлой зоны водопроницаемыми породами, имеют ненапорный свободный уровень и связаны в единую систему с таликами, разделяющими мерзлые острова (рис.1, Ж). Межмерзлотные и внутримерзлотные ...

Скачать
39662
0
0

... выделяется один максимум после дня летнего солнцестояния и один минимум - после дня зимнего солнцестояния в Северном полушарии. В морском подтипе годовая амплитуда температур равна 5°, в континентальном 10-20°. В умеренном типе годового хода температуры также наблюдается один максимум после дня летнего солнцестояния и один минимум после дня зимнего солнцестояния в Северном полушарии, зимой ...

0 комментариев


Наверх