1.1.2 Осложнения химиотерапии

Одна из проблем химиотерапии – токсичность цитостатических препаратов [25]. Применяемые даже в терапевтических дозах химиопрепараты вызывают целый ряд побочных явлений, что связано с их повреждающим действием на ряд органов и систем организма. Невысокая избирательность действия противоопухолевых препаратов объясняется отсутствием качественных отличий в биохимии, темпе роста, способности к репарации после повреждения между опухолевыми и нормальными клетками. Наряду с подавлением ими различных этапов обмена нуклеиновых кислот в опухолевых клетках, они оказывают влияние и на обмен нуклеиновых кислот быстро размножающихся популяций нормальных клеток – иммунокомпетентных, костного мозга, желудочно-кишечного тракта, репродуктивных органов [15,17,25,29,41].

Ряд побочных эффектов сравнительно специфичен для отдельных цитостатиков. К таким побочным действиям относят проявления нейро-, гепато-, кардиотоксичности, нарушения системы свертывания крови, эндокринных органов. Подобные специфические осложнения химиотерапии опухолевых заболеваний зависят от особенностей фармакологических свойств цитостатиков и их метаболизма [15,37].

Нейротоксичность обнаруживается лишь у некоторых противоопухолевых препаратов независимо от их способности проникать через ГЭБ. Проявляется в слабости скелетной мускулатуры, судорожных мышечных сокращений, развитии глаукомы. Имеются данные о нарушениях обмена аланина, лейцина и серина в синапсах [15,17].

Гепатотоксическое действие цитостатиков выражается в разной степени. Наибольшую часть осложнений составляют гепатопатии, не выходящие за пределы отклонений в показателях лабораторных тестов. При длительной цитостатической терапии наблюдаются гипербилирубинемия и гиперхолестеринемия, снижение уровня протромбина и коагуляционных факторов крови. При лечении производными платины гепатотоксичность проявляется в обратимом повышении аминотрансфераз. Антиметаболиты вызывают изменение отдельных функций печени вплоть до желтухи [15,44].

Кардиотоксическое побочное действие в основном присуще противоопухолевым антибиотикам. Отмечают боли в области сердца и нарушение ритма [15,44,49].

Нефротоксичность (характерно для производных платины) зависит от дозы введенного препарата и проявляется повышением содержания мочевины, мочевой кислоты и креатинина в плазме, снижением креатинового клиренса [44].

Алкалоиды наряду с общетоксическим действием влияют на утилизацию глутаминовой кислоты и аргинина, определенным образом действуют на обмен пролина, глутамина, триптофана. Усиливают отдачу гипоксантина, но не тормозят утилизацию клетками аденина. Не вызывают существенных нарушений со стороны печени за исключением уменьшения содержания альбуминов крови. Со стороны почек отмечают уменьшение содержания натрия [44].

Антиметаболиты угнетают гемопоэз, обладают антикоагулянтными свойствами, что проявляется в нарушении свертываемости крови.

Проявление токсичности лимитирует использование противоопухолевых агентов. Развитие осложнений приводит к необходимости снижения дозы цитостатиков или увеличению интервалов между курсами [25,40,43].

1.2 Пептидергическая система организма

 

1.2.1 Механизм образования активных форм регуляторных пептидов

Активные формы пептидов представляют собой полифункциональную группу веществ, которым отводится важная роль природных биорегуляторов. Это природные или синтетические соединения, молекулы которых построены из остатков -аминокислот, соединенных между собой пептидными (амидными) связями C(O)–NH. Большинство регуляторных пептидов образуется из физиологически неактивных белков-предшественников, путем посттрансляционного процессинга [32]. Секретируемые белково-пептидные продукты синтезируются на мембраносвязанных рибосомах ЭПР. Благодаря наличию на N-конце сигнальной последовательности, состоящей из остатков гидрофобных аминокислот, обеспечивается транслокация пептида через мембраны ЭПР. В полости ЭПР отщепление этой последовательности осуществляется при участии сигнальной пептидазы. Далее процессинг осуществляется в ходе передвижения молекул пропептидов по гранулярному ЭПР, комплексу Гольджи и в секреторных везикулах [14,61].

Сначала под действием эндопептидаз образуются неактивные пептиды, содержащие со стороны С- или N-конца “лишние” остатки аминокислот, которые затем удаляются экзопептидазами с карбоксипептидазо-B- и аминопептидазо-B-подобной активностью [4].

Уровень биологически активных пептидов в организме в значительной степени определяется активностью ферментов их обмена, к которым в частности принадлежат АПФ и КПN [13,27,32].

В связи с этим, большой интерес представляет изучение активности данных ферментов у онкологических больных при химиотерапевтическом воздействии, которое прямо или косвенно влияет на какую-либо систему организма.

1.2.2 Роль биологически активных пептидов

Область биологической активности пептидов чрезвычайно широка. Они влияют на состояние сердечно-сосудистой, иммунной, половой, эндокринной, пищеварительной и других систем, изменяют энергетический обмен в организме, участвуют в регуляции работы центральной нервной системы. КПN и АПФ играют важную роль в обмене ангиотензина и брадикинина [31,54].

Ангиотензины – пептиды, образующиеся в организме из белка плазмы ангиотензиногена. Почечный фермент ренин отщепляет от молекулы ангиотензиногена неактивный декапептид ангиотензин I. Другой фермент крови – АПФ – преимущественно в ткани легких отщепляет с карбоксильного конца молекулы ангиотензина I дипептид с образованием ангиотензина II. Ангиотезин II является физиологическим фактором роста клеток, обладает митогенными (учащающими деление) свойствами и, тем самым, стимулирует гиперплазию и пролиферацию клеток. Пептид повышает активность симпатоадреналовой системы, увеличивая синтез адреналина и обусловливая высвобождение норадреналина из окончаний симпатических нервов, что стимулирует гипертрофию сердца и сосудов. Ангиотензин II оказывает сильное сосудосуживающее действие, вызывает быстрое и длительное повышение артериального давления. Кроме того, он увеличивает синтез альдостерона, что сопровождается реабсорбцией натрия и воды. В надпочечниках из ангиотензина II образуется ангиотензин III, обладающий положительной инотропной активностью. Далее при участии аминопептидазы N образуется ангиотензин IV, предположительно, участвующий в регуляции гемостаза [31,36,41,54].

Брадикинин – полипептид, состоящий из 9 аминокислот. Брадикинин способен расширять просвет периферических и коронарных сосудов, снижать артериальное давление, способствует синтезу NО в эндотелии. Пептид повышает проницаемость капилляров, сокращает гладкую мускулатуру бронхов и других органов, вызывает болевой эффект. Он стимулирует синтез и освобождение простагландинов и фактора некроза опухолей ( TNFa ) в различных тканях, освобождение ряда интерлейкинов, способствует процессам репарации и обладает инсулиноподобным действием, стимулируя захват глюкозы периферическими тканями, модулирует передачу нервных импульсов в ЦНС и периферической нервной системе, изменяет состояние гематоэнцефалического барьера [13,52,63]. Брадикинин участвует в широком спектре физиологических и патофизиологических эффектов, и особенно в развитии воспаления [52].

Разрушение брадикинина обусловлено наличием в крови и тканях высокоактивных ферментов – кининаз, осуществляющих физиологический контроль уровня кининов. Наиболее важную роль в метаболизме брадикинина играют два фермента – кининаза I (Карбоксипептидаза N), и кининаза II (ангиотензинпревращающий фермент).

 


Информация о работе «Активность карбоксипептидазы N и ангиотензинпревращающего фермента в сыворотке крови у онкологических больных при химиотерапевтическом воздействии»
Раздел: Биология
Количество знаков с пробелами: 58562
Количество таблиц: 1
Количество изображений: 3

Похожие работы

Скачать
69788
4
2

... раннем послеоперационном периоде. 3.  Выявлены корреляционные взаимосвязи между активностью карбоксипептидазы N и ангиотензинпревращающего фермента и показателями гемостаза в раннем послеоперационном периоде. 4.  Изучаемые ферменты принимают участие в процессах гемостаза у онкологических больных в раннем послеоперационном периоде. Список литературы   1.  Азарян А.В. Пептидгидролазы нервной ...

0 комментариев


Наверх