4.2 Определение требуемой поверхности теплообмена.

 

Для определения величины поверхности теплообмена F необходимо использовать графическую зависимость Е=f(m,q) рис.2.1[4].Относительная температура воздуха q вычисляется по формуле:

,

а комплекс m как:

,

где С237В200+1,31+0,01×(1,32-1,31)×37=1,3137 кДж/(м2×К) – теплоемкость воздуха при tВ=237°С [4].

Из графика Е=0,5, тогда с учетом утечек воздуха поверхность теплообмена вычисляется:

.

4.3 Определение размеров рекуператора.

 

Суммарная площадь проходного сечения труб:

,

где a=1,1 – коэффициент, учитывающий неравномерность распределения продуктов сгорания по трубам рекуператора.

Площадь насадки рекуператора в горизонтальной плоскости:

,

где SПС – проходное сечение одной трубы, отнесённое к 1м2 площади сечения насадки.

Ширина насадки рекуператора В=ВП – 1=9,6 – 1=8,6 м.

Число рядов труб в направлении, перпендикулярном движению воздуха:

,

где S1=0,305 м – шаг размещения трубы по ширине печи.

Высот насадки рекуператора:

,

где P=8,5 м33 – поверхность теплообмена на 1м3 насадки для керамических рекуператоров.

Площадь проходного сечения для движения воздуха:

.

Площадь проходного сечения воздуха по высоте одного ряда труб:

.

Количество рядов труб по высоте одного горизонтального прохода:

.

Число горизонтальных проходов по пути движения воздуха:

,

где h=0,42м – высота трубного элемента с учетом межфланцевого торцевого зазора.

4.4 Окончательные размеры рекуператора.

 

Число рядов труб по ширине рекуператора:

.

Число рядов труб по высоте рекуператора с учётом возможности увеличения высоты последнего прохода на 1 трубу:

.

Ширина насадки рекуператора:

.

Число рядов труб по длине рекуператора:

,

где S2=0,304м – шаг труб по длине рекуператора.

Длина насадки рекуператора:

.

Высота насадки рекуператора:

.

Действительная поверхность теплообмена.

.

4.5 Расчет аэродинамического сопротивления воздушного тракта.

где lТ – коэффициент трения для каналов из огнеупоров (0,05);

 N=1 – число горизонтальных проходов;

 dэ – эквивалентный диаметр для вертикальных каналов (0,114м);

 b =1/273- коэффициент объемного расширения газов;

 g=9,81 м/с2 – ускорение свободного падения;

 wВ,О=1,5 м/с; rВо=1,293 кг/м3;

 коэффициенты местных сопротивлений:

 x1 =0,5;

 x2 =0,3;

 x4 =1,2;

 x7 =к×(S2/S1×np×a+b)=1,4×(304/305×54×0,1+2)=10,335 ,

где к – коэффициент учитывающий турбулентность движения газа;

 np1 – 1=54 – число межрядных проходовпо длине горизонтальных каналов;

 a,b – коэффициенты зависящие от S2 и диаметра труб (a=0,1;b=2).

4.6Расчет аэродинамического сопротивления тракта продуктов сгорания.

 

 где lТ – коэффициент трения для каналов из огнеупоров (0,05);

 dэ – эквивалентный диаметр для вертикальных каналов (0,114);

 x5, x6 –коэффициенты местных сопротивлений (0,5; 0,6);

 rПсо, rво – плотность продуктов сгорания и воздуха;

b - коэффициент объемного расширения газов.



Информация о работе «Расчёт металлургической печи»
Раздел: Физика
Количество знаков с пробелами: 32418
Количество таблиц: 3
Количество изображений: 6

Похожие работы

Скачать
46032
1
0

... площади пода печей определяют не через время нагрева, а используя величину напряжённости активного пода На. В этом случае Fа = Р/На, а длина печи La = Fa/B, где В – ширина печи. 4 Печи для термической обработки сортового проката.   4.1 Режимы термической обработки.   Наиболее распространённым видом термической обработки сортового проката является отжиг с целью проведения полной фазовой ...

Скачать
25460
5
3

... температури, що знаходяться на рівні температури займання палива і нижче. Тому для забезпечення стабільної роботи пальників їх треба оснащати запальниками (частіше електричними). По-друге, в камерній термічної печі сильно змінюється (в 10-20 і більше разів) теплова потужність і, відповідно, витрата палива. В період нагріву потужність максимальна, а в період витримки може впасти до нуля. Стандартн ...

Скачать
28382
1
0

... мартеновской плавки. От интенсивности передачи тепла твердой шихте или жидкой ванне зависит скорость нагрева и плавления шихто­вых материалов и качество работы мартеновской печи в целом. Большая часть различных мер (совершенствование конструкции головок и печи в целом, организация факела и режима завалки и т. д.) направлена на то, чтобы создать условия, при которых максимум подведенного тепла в ...

Скачать
15187
2
0

... большого конуса с воронкой, перекрывающего колошник печи, и малого конуса с вращающейся приемной воронкой. Такая конструкция засыпного аппарата позволяет равномерно распределять материал на окружности колошника и устраняет потери газов в атмосферу. Загрузку шихты в доменную печь осуществляют послойно. Процесс развития доменного производства идет в направлении повышения содержания железа в рудном ...

0 комментариев


Наверх