2.2 Определение числа пазов, витков и сечения провода обмотки статора

Следующий этап расчёта включает определение числа пазов статора Z1 и числа витков в фазе обмотки статора W1.

 (7)

Значения tZ1min, tZ1max определяются по графику на рисунке 8.26 [1, c. 282]. Для h=280 мм, 2p=10, t=124 мм, tZ1min=0.0138 м, tZ1max=0.016 м.

Окончательное число пазов статора Z1 выбирается в полученных пределах с учётом условий симметрии: q1 есть целое число.

 (8)

где m – число фаз, m=3.

Принимается Z1=90, q1=3. Окончательное значение tZ1 вычисляется по формуле:

 (9)

 входит в выбранный диапазон.

Далее предварительно определяется число эффективных проводников в пазу u’п по формуле 8.17 [1, c. 284]при условии, что параллельных ветвей в обмотке 4 (a=4).

 (10)

где I1ном – номинальный ток АД, А по формуле 8.18 [1, c. 279].

 (11)

Окончательно принимается a=5.

Число эффективных проводников в пазу равно:

 (12)

Для двухслойной обмотки принимаем . Относительное число витков в фазе обмотки по формуле 8.20 [1, c. 279]:

 (13)

Окончательное значение линейной нагрузки по формуле 8.21 [1, c. 279]:


 (14)

 (15)

Пусть шаг обмотки y=7 зубцовых делений, тогда относительный шаг равен:

 (16)

Коэффициент укорочения:

 (17)

Коэффициент распределения определяется по таблице 3.16 [1, c. 113]. Принимается =0,943.

Обмоточный коэффициент определяется следующим образом:

(18)

Далее определяется значение потока по формуле 8.22 [1, c. 285]:

 (19)


Индукция в воздушном зазоре определяется по формуле 8.23 [1, c. 285]:

 (20)

Выбор допустимой плотности тока производится с учётом линейной нагрузки двигателя:

 (21)

Значение (A·J) для АД различных исполнений приведены на рисунке 8.27 [1, c. 286]. Для проектируемого двигателя выбирается (A·J)=150·109 A22.

Сечение эффективных проводников определяется исходя из тока одной параллельной ветви и допустимой плотности тока в обмотке по формуле 8.24 [1, c. 285]:

 (22)

Принимается число эффективных проводников nэл=3, qэл=1.227 мм2 (таблица П-28 [2, c. 470]), тогда qэф1=3•1.227=3.68 мм2, dиз=1,33 мм. Обмотка выполняется круглым проводом.


Далее уточняется плотность тока в обмотке:

 (23)

2.3 Расчёт размеров зубцовой зоны статора и воздушного зазора

По таблице 8.10 [1, c. 289] Ba=1.1 Тл и BZср=1.6 Тл. По таблице 8.11 [1, c. 290] выбирается коэффициент заполнения сталью магнитопровода kc1=0,95. По выбранным значениям Bа и kc1 рассчитывается высота ярма статора по формуле 8.28 [1, c. 288]:

 (24)

Минимальная ширина зубца статора:

 (25)

Размеры паза вначале определяются без учёта размеров и числа проводников обмотки, исходя из допустимых значений индукции в зубцах и ярме статора.

Высота паза определяется по следующей формуле:

 (26)


Ширина паза:

 (27)

 (28)

где - высота шлица зуба, м; - ширина шлица зуба, м.

Принимается =1 мм, =4 мм [1, c. 295-296]. Приведённые расчёты выполнены для трапециидального паза. Форма паза статора представлена в графической части проекта.

.

 (29)

Для расчёта коэффициента заполнения паза необходимо определить площадь паза в свету и учесть площадь сечения паза, занимаемую корпусной изоляцией Sиз и прокладками в пазу Sпр. Размеры паза в свету определяются с учётом припусков на шихтовку и сборку сердечников Dbп и Dhп:

 (30)


Из таблицы 8.12 [1, c. 292] Dbп=Dhп=0,3 мм.

Площадь поперечного сечения трапециидального паза, в которой размещаются обмотки, корпусная изоляция и прокладки:

. (31)

Площадь занимаемая корпусной изоляцией в пазу, м2:

 (32)

где - односторонняя толщина изоляции в пазу, м.

Из таблицы 3.1 [1, c. 74] выбирается =0,55·10-3 м2, тогда:

Площадь поперечного сечения прокладок по 8.47, м2:

 (м2 ) (33)


Площадь поперечного сечения паза, остающаяся свободной для размещения проводников обмотки, м2:

Контролем правильности размещения обмотки в пазах является значение коэффициента заполнения паза:

, (34)

где dиз – диаметр изолированного элементарного проводника, мм. dиз=1.33*10-3 м.

Коэффициент заполнения входит в указанные пределы (0.72<<0.74)[1]

Для обмотки статора используется круглый медный эмалированный провод ПЭТ-155 с площадью поперечного сечения 1.227 мм2.


Информация о работе «Разработка асинхронного двигателя с короткозамкнутым ротором»
Раздел: Физика
Количество знаков с пробелами: 39808
Количество таблиц: 6
Количество изображений: 13

Похожие работы

Скачать
32960
58
9

... на вале ротора, далее, посредством щеточного контакта, к обмотке ротора можно подключить пусковой реостат. В данном курсовом проекте речь пойдет о трехфазном асинхронном двигателе с короткозамкнутым ротором. 1.  АНАЛИТИЧЕСКИЙ ОБЗОР   1.1  Современные серии электрических машин В 70-е годы была разработана и внедрена серия электродвигателей 4А, основным критерием при проектировании которой ...

Скачать
102925
0
29

... b = a(t2) + g(t2) = w0× t + g 2. ТЕХНИЧЕСКОЕ ЗАДАНИЕ 2.1 Наименование и область применения Разрабатываемое устройство называется: автоматическая система управления асинхронным двигателем. Область применения разрабатываемого устройства не ограничивается горнодобывающей промышленностью и может использоваться на любых предприятиях для управления машинами с асинхронным приводом. 2.2 Основание для ...

Скачать
140823
20
31

... . Целью дипломного проекта является разработка и исследование автоматической системы регулирования (АСР) асинхронного высоковольтного электропривода на базе автономного инвертора тока с трехфазным однообмоточным двигателем с детальной разработкой программы высокого уровня при различных законах управления. В ходе конкретизации из поставленной цели выделены следующие задачи. Провести анализ ...

Скачать
40364
154
12

... ; 20.      ; 21.      . Полученный в расчете коэффициент насыщения  отличается от принятого  приблизительно до 3%, что вполне допустимо. Таблица 3 - Пусковые характеристики асинхронного двигателя с короткозамкнутым ротором с учетом вытеснения тока и насыщения от полей рассеяния № п/п Расчетные формулы Размерность Скольжение s 1 0,8 0,5 0,2 0,1 0,22=sкр 1 ...

0 комментариев


Наверх