Гашение дуги постоянного тока в камере с продольной щелью в поперечном магнитном поле

Проектирование электромеханических устройств
РЯДЫ ПРЕДПОЧТИТЕЛЬНЫХ ЧИСЕЛ НОМИНАЛЬНЫХ ПАРАМЕТРОВ ОПРЕДЕЛЕНИЕ ОСНОВНЫХ РАЗМЕРОВ И ПАРАМЕТРОВ АППАРАТОВ СЕРИИ Зависимость силы контактного нажатия аппаратов серии от величины номинального тока Аппараты низкого напряжения Порядок расчета общей электрической изоляции аппарата высокого напряжения Расчёт проводника с переменным сечением по длине Повторно-кратковременный режим работы Выбор формы контактной поверхности Определение силы контактного нажатия коммутирующего контакта Определение переходного сопротивления контактов Определение напряжения и температуры нагрева коммутирующих контактов Определение тока сваривания по экспериментальным данным МАЛОМОЩНЫЕ РЕЛЕ При относительно больших силах и небольших перемещениях (прогибах) целесообразно применять сталь Выбор материала пружины Условия гашения дуги переменного тока Учёт влияния индуктивности отключаемой цепи при расчётах дугогасительных устройств постоянного тока Гашение дуги постоянного тока в камере с продольной щелью в поперечном магнитном поле Производится расчёт температуры нагрева камеры. Этот пункт, прежде всего, относится к проектированию аппаратов для повторно-кратковременного режима ГАШЕНИЕ ДУГИ ПЕРЕМЕННОГО ТОКА В КАМЕРЕ С ПРОДОЛЬНОЙ ЩЕЛЬЮ В ПОПЕРЕЧНОМ МАГНИТНОМ ПОЛЕ Корректируются размеры дугогасительного устройства с учётом стрелы вылета дуги
111764
знака
7
таблиц
77
изображений

16.11 Гашение дуги постоянного тока в камере с продольной щелью в поперечном магнитном поле

1) Производится выбор вида дугогасительной камеры с учётом имеющихся конструкций, [1, стр.134].

2) Выбирается ширина щели  и рекомендуемые значения:

3) Выполняется эскизная проработка конструкции дугогасительного устройства в определённом масштабе. По эскизу с учётом масштаба определяется площадь пластин магнитопровода системы магнитного дутья и расстояния между ними

При определении величины  учитывают возможную траекторию движения дуги, чтобы она надёжно входила в щель камеры под действием внешнего магнитного поля

При определении величины  учитывают ширину подвижного контакта, а также зазоры между ним и стенками камеры и также учитывают толщину стенок камеры. Здесь же предварительно выбирается материал для изготовления щелевой камеры из рекомендуемых. Впоследствии уточняется материал после расчёта нагрева камеры.

Рисунок 1.41 – Эскизная проработка конструкции дугогасительного устройства

4 Производится выбор величины напряжённости магнитного поля в зоне размыкания контактов для номинального тока, см. [1, стр.158, рис.6.14].

При выборе напряжения поля необходимо принимать минимально возможный линейный износ контактов.


Рисунок 1.42 – Зависимость линейного износа от напряженности магнитного поля

5 Производится проектный расчёт электромагнитной системы дугогасительного устройства. Задачами данного расчёта являются: определение диаметра сердечника системы магнитного дутья ; числа витков катушки системы магнитного дутья ; корректировка величин  и . Построение зависимости напряжённости магнитного поля в магнитном зазоре  от величины отключаемого тока , которая используется для определения параметров дугогасительного устройства.

В зоне размыкания контактов обычно действует суммарная напряжённость магнитного поля , которая имеет две составляющие: собственную напряжённость магнитного поля, созданную элементами токоведущего контура и рычажными контактами, а также напряжённость магнитного поля , созданную электромагнитной системой магнитного дутья, т.е. общая напряжённость будет определяться суммой этой напряжённости.

Исходную величину напряжённости  устанавливают по графической зависимости, с учётом минимального линейного износа контактов для номинального тока. Собственная напряжённость магнитного поля определяется по формуле:

где – ток отключения (из принятого ряда отключаемых токов).

– это раствор контактов, в метрах

–это ширина токоведущей контактной детали (ширина подвижного контакта), в метрах

Зная величины напряжённостей магнитного поля  и  можно определить напряжённость магнитного поля , которую должна создать система магнитного дутья при номинальном токе . Полученное значение  должно быть использовано для расчётов параметров системы магнитного дутья. Однако необходимо выполнить сопоставление перед расчётом параметров системы магнитного дутья. При достаточно больших  может оказаться, что напряжённость магнитного поля  уже достаточно велика и может примерно достигать значений требуемой напряжённости . Если  находится в пределах , то необходимость в использовании системы магнитного дутья отпадает, в этом случае условно принимают, что и для аппарата можно использовать щелевую камеру без катушки магнитного дутья. Если величина  находится в пределах: , то в практических расчётах  не используется, т.е. , и считают, что необходимую величину напряжённости магнитного поля должна создать система магнитного дутья. Если значения  находятся в пределах , то в расчётах учитывают обе составляющие напряжённости магнитного поля. В этом случае, расчёт параметров электромагнитной системы магнитного дутья выполняют на величину напряжённости магнитного поля, полученную по формуле: , для номинального тока, а затем для всего диапазона отключаемых токов.


16.11.1 Порядок расчёта электромагнитной системы магнитного дутья

 

1 – сердечник; 2 – полюс системы магнитного дутья; 3 – катушка магнитного дутья 4 – изоляционная трубка.

Рисунок 1.43 – Эскиз системы магнитного дутья

1 С учётом указанных рекомендаций определяется необходимая напряжённость магнитного поля Нб для номинального тока. С целью упрощения расчётов будем считать, что собственная проводимость поля Нс в данном случае очень мала и ей можно пренебречь Нс ≈ 0 .

2 Выбирается материал магнитопровода для сердечника и пластин полюсов с учётом имеющихся рекомендаций. Следовательно, для данного материала будет известна кривая намагничивания .

3 По нижнему значению величины Нб для номинального тока определяется число витков катушки магнитного дутья.

Число витков катушки:

где Нб – напряжённость магнитного поля в зоне размыкания контактов в зазоре;

 – номинальный ток, А;

–коэффициент, который учитывает магнитное состояние системы электромагнитного дутья. Для ненасыщенных магнитопроводов, что соответствует номинальному току, Кб принимается в пределах . Полученное расчётное значение  округляется до целого числа, в большую сторону, и после этого уточняется значение Нб.

4 По полученным значениям Нб и Sп определяется величина магнитного потока Фб в магнитном зазоре . Расчёт производится по формуле:

где – магнитная постоянная,  

Для самоконтроля по найденному значению  определяется величина индукции  должна быть порядка

5 Исходя из условия, что магнитный поток , где – это магнитный поток в сердечнике (потоками рассеивания пренебрегаем) и принимая, что индукция  в сердечнике для ненасыщенного состояния, соотношения номинальному току должно быть в пределах . Определяем необходимое сечение сердечника по формуле: .

Зная величину сечения сердечника, определяем диаметр сердечника:

Полученное значение  округляем до целого числа и окончательно выбираем с учётом имеющегося сортамента на выбранный магнитный материал. После этого уточняется значение сечения сердечника .

6 Строится в масштабе кривая намагничивания для принятого магнитного материала. Полученная зависимость  будет использована для анализа магнитного состояния электромеханической схемы, которая будет оцениваться по величине индукции .

Рисунок 1.44 – Кривая намагничивания

7 Производится расчёт зависимости напряжённости магнитного поля Нб от величины отключаемого тока по формуле:

Порядок расчёта зависимости Нб от Iотк рекомендуется следующий:

Для каждого тока отключаемого последовательно определяется:

По полученному значению индукции Вс устанавливается положение рабочей точки на кривой намагничивания , а именно: находится эта точка ещё на линейном участке или находится на участке перехода в насыщение (колено кривой намагничивания). Условно принимается, что индукция насыщения Вс составляет . Если рассчитанное значение Вс для какого-то принятого Iотк находится в указанном диапазоне индукции, то необходимо пересчитать величину Нб, принимая новое значение коэффициента Кб, соответствующее уже насыщенному состоянию сердечника электромагнитной системы. В этом случае Кб принимается в пределах Кб =(0,4 ÷ 0,6).

В области магнитного насыщения сердечника величину напряжённости Нб необходимо рассчитать, по крайней мере, для двух-трёх значений тока отключения, принимая для всё больших значений отключаемого тока большие значения коэффициента Кб. Для рационального проектирования электромагнитной системы насыщение сердечника должно наступать при токах отключения: Iотк =(2,5 ÷3,5)Iн

Рисунок 1.45 – Определение  и


8 Если при расчётах электромагнитной системы необходимо учитывать две составляющие магнитного поля Нб и Нс в зоне размыкания контактов, то для каждого отключаемого тока, кроме зависимости  выполняется расчёт зависимости .

Рисунок 1.46 – Зависимость

6 Определяется скорость движения электрической дуги  для всех принятых токов отключения в зависимости от соотношения выбранной ширины щели и диаметра дуги . Расчёт выполняется по формулам:

а) если

б) если

где: – средний ток в дуге, А

– напряжённость поля в зоне размыкания контактов, которая определяется по графическим зависимостям, полученным в результате расчёта:

Расчёт диаметра дуги производится по формуле:

где – скорость движения дуги, см/с, вычисленная по формуле а) или б)

Очевидно целесообразно в начале расчёт  производить по формуле: а) до тех пор, пока будет выполняться условие , а затем по формуле б).

Следует также полагать, что для каждого отключаемого тока, который изменяется от Iотк до 0, скорость перемещения дуги является средней величиной и принимается как постоянная величина.

7 Выполняется построение ВАХ для всех отключаемых токов, по которым определяется критическая длина дуги , нагрузочные характеристики строим по Uрасч и Iотк. ВАХ рассчитывают по формулам:

а) для ширины щели

б) для

где: – длина дуги, которая принимается произвольно, см;

– ширина щели, см;

– текущее значение тока в дуге, при изменении отключаемого тока от Iотк до 0.

 – скорость перемещения дуги, см/с

Если в расчётах  получается чрезмерно больше, , то целесообразно увеличить градиент падения напряжения на дуге. Более высокий градиент можно получить при уменьшении ширины щели . Приняв новое  расчёты повторяются, начиная с п. 6.

8 Определяем время горения дуги  и строится зависимость: tг = f (Iотк)


Рисунок 1.47 – ВСХ дуги

9 Определяются перенапряжения для каждого отключаемого тока и проверяется выполнимость условия:

 – максимальное значение напряжения при отключении

10 Определяется стрела вылета дуги  для всех отключаемых токов и корректируются размеры камеры.


Информация о работе «Проектирование электромеханических устройств»
Раздел: Физика
Количество знаков с пробелами: 111764
Количество таблиц: 7
Количество изображений: 77

Похожие работы

Скачать
19194
4
2

... . t, с U, °С 0 0 500 36,5 1000 54 1500 62,3 2000 66,4 2500 68,2 3000 69,2 3600 69,7 2. Проектирование передаточного устройства 2.1 Выбор и обоснование кинематической схемы Согласно технологической схеме рабочей машины, транспортер приводится в движение электродвигателем через цепную передачу. Цепная передача отличается простотой в монтаже и эксплуатации, исключает ...

Скачать
35454
6
10

... механизма подачи, которое остается между двигателем и исполнительным механизмом. Принимаем передаточное отношение ременной передачи i=3. Таблица 2 - Механика привода подач станка 16К20 Характер подачи Поперечная подача резцедержателя мм/мин Продольная подача стола, мм/мин Минимальная 0,000662 0,0000619 Максимальная 0,3814 0,253377 Ускоренная 1900 3800 Рассчитаем передаточные ...

Скачать
53562
7
16

... две части: расчет надежности механической и электрической части. Расчет механической части на данном этапе проектирования произвести не возможно, так как величины интенсивности отказов элементов γi, входящих в изделие известны не для каждого элемента. Расчет электрической части трепанатора возможно произвести по методике, изложенной в [] Вероятность безотказной работы определим по формуле: ...

Скачать
59924
27
4

... числовое значение списочного номера студента. Трудоёмкость изготовления детали получена путём суммирования показателей трудоёмкости каждой операции. 2.         ПРОЕКТироВАНие ПОТОчнОй ЛиНии МЕХАНической ОБРаБотКИ ДЕТАЛи 2.1.     Особенности и преимущества поточного производства Поточное производство – это производство, при котором станки располагаются в последовательности технологических ...

0 комментариев


Наверх