Удельная производительность установки по дистилляту d

Проектирование адиабатной выпарной установки термического обессоливания воды
Анализ состояния вопроса и обоснование актуальности темы Выбор типа выпарной установки и их классификация Анализ действующей схемы получения деминерализованной воды на АО “Акрон” и возможностей применения схемы с адиабатной выпарной установкой Расчёт адиабатной выпарной установки Определим расход рассола, поступающего в первую камеру испарения G Находим количество оборотной воды, необходимое для конденсации паров парогазовой смеси оттяжек в каждом из конденсаторов Удельная производительность установки по дистилляту d Определим температурный перепад в седьмой ступени Найдём площади теплопередающих поверхностей конденсаторов оттяжек парогазовой смеси из ступеней испарения полагая, что конденсируется весь пар Расчёт сепарационного устройства и нахождение ожидаемого качества дистиллята Уточнённое количество труб в пучке составит n=n1´n2=46´48 =2208 шт Уточнённое количество труб в пучке составит Определим геометрические размеры данного типа перепускного устройства применительно к проектируемой установке по характеристикам на стр. 186 [20] Компоновка и основные размеры установки Коэффициент эжекции u=9 Выбор насосов Электротехническая часть Расчёт электрических нагрузок Трансформатор мощности подключён к распределительному щиту 6 кВ кабелем с алюминиевыми жилами, проложенным по воздуху Найдём сопротивление трансформатора по его номинальным характеристикам Таким образом, выбранный выключатель удовлетворяет условиям динамической устойчивости и является термически стойким Текущие расходы на содержание установки составляют в ценах на сегодняшний день Санитарно-гигиенические факторы условий труда Лк - при комбинированном освещении Разновидности опасных и вредных факторов Падение предметов с высоты Возможная причина возникновения взрыва
159223
знака
27
таблиц
11
изображений

2.3.7.2.8 Удельная производительность установки по дистилляту d


2.3.7.2.9 Найдём температуру воды, поступающей на испарение, на выходе из каждой ступени конденсаторов tвi,



2.3.7.2.9.1 Температура воды на выходе из девятой ступени tв9

2.3.7.2.9.2 Температура воды на выходе из восьмой ступени tв8



2.3.7.2.9.3 Температура воды на выходе из седьмой ступени tв7

2.3.7.2.9.4 Температура воды на выходе из шестой ступени tв6

2.3.7.2.9.5 Температура воды на выходе из пятой ступени tв5

2.3.7.2.9.6 Температура воды на выходе из четвёртой ступени tв4



2.3.7.2.9.7 Температура воды на выходе из третей ступени tв3

2.3.7.2.9.8 Температура воды на выходе из второй ступени tв2


2.3.7.2.9.9 Температура воды на выходе из первой ступени tв1


2.3.7.2.10 Найдём количество пара, подаваемого в головной подогреватель Gп


где hп’’=2684,1 кДж/кг – энтальпия насыщенного пара, подаваемого в головной подогреватель, при температуре tп=105 оС по таблице 2-1 [18],

hп=313,94 кДж/кг – энтальпия конденсата при температуре в подогревателе.

2.3.7.2.11 Удельный расход теплоты составит dт


2.3.7.3 Третий вариант схемы, предполагающий последовательно подавать в конденсаторы-пароохладители исходную воду и смешивать её с циркуляционной перед подачей с головной подогреватель, изначально представляется нефункциональным. Это связано с тем, что количество исходной воды оказывается не достаточным для конденсации паров в ступенях установки при любой степени концентрирования.

2.3.8 Результаты расчётов сводим в таблицу 4

Таблица 4 - Сравнительные характеристики вариантов схем

Параметры

Первый вариант

 схемы

Второй вариант

 схемы

1 Расход воды поступающей

 на испарение в первую

ступень, кг/с

1950,5 1950,5
2 Расход исходной воды, кг/с 315,6 1462,9

3 Расход продувочной

 воды, кг/с

105,2 1252,5

4 Расход охлаждающей

 воды, кг/с

3484,8 168
5 Кратность циркуляции 6,18 1,33

6 Общее солесодержание

 продувочной воды, мг/кг

900 360

2.3.9 Проанализируем полученные результаты:

При использовании первого варианта тепловой схемы потребуется водооборотный цикл с объёмом циркулирующей воды ~ 3320 кг/с или 11940 т/час.

Во втором случае имеем большой тепловой поток в виде продувочной воды с температурой tк=40 оС в количестве 1252,5 кг/с или 4510 т/час с повышенным солесодержанием, которое необходимо каким-то образом утилизировать или непосредственно сбрасывать в канализацию. Надо отметить, что во второй схеме величина недогрева охлаждающей воды в конденсаторах ступеней мала, что негативно сказывается на степени конденсации паров.

Тепловая эффективность обоих схем, выраженная в виде удельного расхода теплоты dт, примерно одинаковая и в случае использования в качестве основного греющего пара - отработанного пара турбин приводов силового оборудования, не является определяющей величиной.

Основываясь на этих данных, принимаем к расчёту схему с тремя теплоотводящими ступенями. Её применение позволит значительно сократить расход воды на подпитку установки и продувочной воды, сбрасываемой в промливневую канализацию. Кроме того, за счёт более низкой температуры охлаждающей воды в последних ступенях удастся добиться более глубокого вакуума, более качественной конденсации пара и сократить площади поверхностей теплообмена конденсаторов.

2.3.10 Найдём температурный перепад в ступенях, как среднелогарифмический по формуле (3-93) [20] Dtсрi

2.3.10.1 Среднелогарифмический перепад в первой ступени Dtср1



2.3.10.2 Среднелогарифмический перепад во второй ступени Dtср2

2.3.10.3 Среднелогарифмический перепад в третей ступени Dtср3


2.3.10.4 Среднелогарифмический перепад в четвёртой ступени Dtср4


2.3.10.5 Среднелогарифмический температурный перепад в пятой ступени Dtср5


2.3.10.6 Среднелогарифмический перепад в шестой ступени Dtср6



Информация о работе «Проектирование адиабатной выпарной установки термического обессоливания воды»
Раздел: Физика
Количество знаков с пробелами: 159223
Количество таблиц: 27
Количество изображений: 11

0 комментариев


Наверх