1.3 Методы осаждения пленок

Как правило, выбор метода осаждения осуществляется уже после выбора материала. Однако в ряде случаев предпочтение оказывается определенному методу осаждения, особенно если он хорош при массовом производстве. В любом случае перед тем, как сделать окончательный выбор, необходимо ответить на три вопроса: согласуется ли применяемый метод с данным материалом? Какова возможность управления процессом? Какова стоимость применения этого метода?

1) Напыление в вакууме. Этот метод наиболее широко используется при напылении пленок и подходит для большинства материалов. Исключение составляют тугоплавкие металлы и такие материалы, как окись олова, которая при испарении может разлагаться. Основными проблемами, возникающими при реализации этого метода, является сильная зависимость количества примесей от условий напыления и трудность получения пленки равномерной толщины, имеющей сравнительно большую площадь. Эти проблемы тесно связаны со стоимостью получения пленки, поскольку увеличение стоимости определяется получением за один технологический цикл пленки большей площади. Если скорость напыления не слишком высока, то контроль за сопротивлением пленки осуществляется сравнительно легко. В настоящее время уже созданы промышленные установки для осаждения методом напыления в вакууме. Большинство из них является установками дискретного типа; они не могут осуществлять процесс непрерывного напыления, поскольку трудно восполнять испаряемый материал не нарушая вакуума. В случаях, когда требования к допустимым отклонениям позволяют для получения линейных размеров резистора использовать маски, метод напыления оказывается предпочтительным, так как перемещение маски в вакууме не представляет трудной проблемы.

2) Катодное распыление. Этот метод приемлем для тугоплавких металлов (таких, как тантал) и сплавов (таких, как нихром), когда в процессе напыления требуется осуществлять точный контроль. Во время катодного распыления существует большая опасность попадания примесей, чем при напылении. Введение таких методов, как распыление со смещением и газопоглощающее распыление, значительно уменьшает эту опасность. Контроль сопротивления во время распыления затруднен из-за взаимодействия плазменного разряда. В то же время контроль толщины пленки по времени осаждения легче проводить при процессе катодного распыления. Одной из основных причин, мешающих применять этот метод, является то, что необходимый для распыления образец не всегда может иметь линейные размеры, достаточные для изготовления катода. В промышленных установках использование больших катодов не представляет больших трудностей. Метод катодного распыления очень удобен для применения в установках с непрерывным процессом осаждения, поскольку в этом случае проблемы восполнения вещества катода не существует. Использование контактных масок при катодном распылении затруднено. Температуры подложек сравнимы с температурами, которые необходимо поддерживать при методе напыления в вакууме, а контроль за температурами подложек в этом случае осуществлять значительно труднее чем при методе напыления в вакууме.

3) Пиролитическое разложение. Этот метод в основном применяется для получения углеродных пленок. Одним из принципиальных ограничений, затрудняющих реализацию этого метода, является поддержание относительно высокой температуры подложки. В дополнение к этому затрудняется контроль за толщиной пленки, отчасти из-за проблемы создания устройства управления и, отчасти, из-зa трудности получить хорошую равномерность толщины пленки на большой поверхности вследствие сильной зависимости скорости осаждения от температуры подложки. Получение пленок с высокой степенью равномерности толщины затруднено из-за различий газового состава в атмосфере камеры. Однако в промышленности широко используется метод эпитаксиального осаждения полупроводниковых пленок. Стремятся к тому, чтобы пленки, полученные этим методом, имели меньшую концентрацию примесей по сравнению с пленками, полученными методами напыления в вакууме и катодного распыления. При данном методе осаждения применять маски не представляется возможным из-за высокой температуры подложки и природы напыляемого материала.

4) Гидролиз. Этот метод получения пленочных резисторов ограничивается оловянными оксидными пленками и требует температуры подложки свыше 500° С или выше. Обычно стремятся получить пленки с высокой степенью шероховатости поверхности, и поэтому контроль за точной величиной сопротивления сложен. Гидролиз, так же как и метод пиролитического разложения, не позволяет применять маски. Пленки, полученные этим методом, имеют хорошую адгезию с подложкой. Этот метод хорошо использовать в промышленности.

5)Химическое осаждение. Тонкопленочные резисторы на основе химически осажденных пленок в настоящее время находятся еще в стадии разработки. Этот метод так же хорошо использовать в промышленности однако, к сожалению, он применим лишь для ограниченной номенклатуры металлов. По-видимому, контроль можно вести только по одному времени течения процесса, и вполне вероятно, что при этом могут возникнуть те же проблемы обеспечения равномерности, что и в случае метода пиролитического разложения.

Одним из аспектов получения резисторов с помощью любого из описанных методов является организация специальной металлургии проводников. Для многих резистивных материалов важно, чтобы проводящий слой осаждался в той же установке, что и резистивная пленка. Это особенно важно для материалов с низким поверхностным сопротивлением. Обычно осаждение пленок из двух различных материалов не представляет сложности при напылении в вакууме или пиролитическом разложении. Однако для метода катодного распыления необходимы специальные установки, в которых многокатодные системы обеспечивают быстрое последующее осаждение второго металла. Достоинства и недостатки различных методов осаждения представлены в табл. 1.

Метод Достоинства Недостатки
Напыление в вакууме Маскирование в процессе напыления. Легкий контроль. Почти полная универсальность. Проблема тугоплавких материалов. Газовые примеси.
Катодное распыление Доступность распыления тугоплавких материалов. Большой строк службы испарителя. Малая плотность упаковки. Наличие катода. Проблема управления. Газовые примеси.
Пиролитическое разложение Большая скорость процесса. Высокая чистота. Хороший отжиг. Высокая температура подложки. Неравномерность толщины пленки.
Гидролиз Хорошее сцепление пленки с подложкой. Высокая температура подложки. Неравномерность толщины пленки. Шероховатость.
Химическое восстановление Дешевизна, использование гибкой подложки Сложность управления


Информация о работе «Тонкопленочные резисторы»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 50895
Количество таблиц: 1
Количество изображений: 13

Похожие работы

Скачать
41605
1
1

... диэлектрик — металл. Пленки тантала и его соединений Пленки тантала и его соединений в последние годы получают все более широкое распространение при изготовлении тоикопленочных элементов интегральных схем. Выбор тантала в качестве исходного материала во многом объясняется тем, что в зависимости от условий получения талталовых пленок они могут иметь различную структуру и соответственно в ...

Скачать
14538
1
3

... 4 ГГ ц и имеют пластинчатую форму длиной от 4 до 20 мм, шириной от 3-до 6 мм, толщиной 1 мм, либо цилиндрическую диаметром от 1,5 до 4 мм и длиной от 12 до 24 мм. Высокомегаомные и высоковольтные резисторы. Резисторы специального назначения Высоко мегаомные резисторы, отличительной особенностью которых является низкий уровень номинальной мощности рассеивания (порядка десятков милливатт и ...

Скачать
29358
0
0

... . Резисторы с такими зависимостями применяются для регулировки громкости и тембра звука, яркости свечения индикаторов и др. Резисторы с характеристиками Е и И используют в регулировке стереобаланса, а резисторы с косинусными и синусными зависимостями применяют в устройствах автоматики и вычислительной техники. Отклонения от заданной кривой определяются допусками. Для резисторов общего применения ...

Скачать
26532
10
0

результаты: - произвели электрический расчет схемы с помощью программы электрического моделирования “VITUS”, в результате которого мы получили необходимые данные для расчета геометрических размеров элементов; - произвели расчет геометрических размеров элементов и получили их размеры, необходимые для выбора топологии микросхемы; - произвели выбор подложки для микросхемы и расположили на ней ...

0 комментариев


Наверх