Содержание

Введение

1. Теоретические основы построения модуляторов и демодуляторов

2. Микроэлектронные формирователи и преобразователи измерительных

сигналов

2.1. Формирование синусоидальных высокочастотных сигналов с

повышенной стабильностью амплитуды и линейностью характеристики

управления по частоте

2.2. Теоретические основы управляемых автогенераторов

3. Прецизионный амплитудный модулятор

4. Линейный частотный модулятор

5. Цифровой частотно-фазовый демодулятор

Заключение

Список использованной литературы


Введение

 

В основе проектирования (интегрализации) радиоприемных устройств (РПУ) на ИС лежат общие принципы проектирования микроэлектронной аппаратуры, которые приобретают некоторые особенности, связанные со спецификой приемной аппаратуры.

Отличительными чертами РПУ являются:

аналоговый характер сигнала, его большой динамический диапазон (доли микровольт – единицы вольт);

широкий частотный диапазон (от постоянного тока – на выходе детектора, до сотен мегагерц или десятков гигагерц – на выходе);

большое число нерегулярных соединений;

функциональное разнообразие узлов (блоков) при их относительно небольшом общем числе.

К функциональным блокам (каскадам) предъявляются разнообразные требования, часто зависящие от типа сигналов. В некоторых узлах должна быть обеспечена прецизионность изготовления. Часто оказывается необходимым изменять параметры элементов в процессе регулировки аппаратуры, что нежелательно при микроэлектронном исполнении.

На цифровых ИС можно реализовать практически любой алгоритм обработки сигнала, осуществляемый в приемно-усилительных устройствах, включая элементы оптимального радиоприема.

Преимущества цифровой обработки: неограниченно долго можно хранить информацию, отсутствие ошибок, параметрических уходов при функционировании, легкая возможность адаптации (изменение параметров устройств под влиянием принимаемого сигнала или по команде), высокая технологичность в производстве, большие перспективы дальнейшей микроминиатюризации.


1.   Теоретические основы построения модуляторов и демодуляторов

 

Аналоговый перемножитель сигнала (ПС) является универсальным базовым блоком, выполняющим ряд математических функций: умножение, деление, возведение в квадрат. В ряде случаев функциональные возможности ПС реализуются совместно с ОУ.

ПС может применяться в качестве модулятора. Рассмотрим основные принципы построения модуляторов и демодуляторов.

 Балансный модулятор может иметь высокую линейность лишь по одному (модуляционному) входу. Второй вход (вход несущей) может запитываться переменным напряжением с постоянной амплитудой, причем уровень несущей может быть достаточно большим и вырождаться в функцию коммутации SН(t) (рис. 1,а).

Физически Это означает, что активные элементы модулятора при высоком уровне входного сигнала превращаются в синхронные ключи, при этом модулирующий сигнал UM(t) (рис. 1,б) эффективно коммутируется с частотой несущей SН(t), образуя выходной сигнал в виде (рис. 1,в)


, (1)

где К – коэффициент пропорциональности.

Рис. 1. Диаграммы, поясняющие работу БМ при воздействии функции коммутации

Таким образом, при использовании БМ в режиме сильных сигналов один из сигналов (несущая) представляет собой симметричную прямоугольную волну единичной амплитуды SН(t) (рис. 1, а) первая гармоника которой  является полезной, а другие – нежелательны.

Используя разложение Фурье, несущую SН(t) можно представить в виде суммы членов бесконечного гармонического ряда с частотами кратными

,

где коэффициенты Фурье вычисляются по формуле

.

Для подавления гармонических составляющих ФНЧ с частотой среза немного выше  (рис. 2). В этом случае для первой гармоники выходного напряжения (1) можно записать

, (2)

где К – коэффициент, учитывающий произведение масштабных коэффициентов передачи ПС и ФНЧ на частоте первой гармонической; UН – напряжение колебания ограниченной несущей.


Рис. 2. Схема БМ

Если на модулирующий вход подать сигнал с постоянной составляющей

, (3)

где U0 – напряжение постоянной составляющей; UM и  - амплитуда и частота модулирующего напряжения; m=UM/U0, то на выходе ФНЧ БМ в соответствием с выражением (2) будет получен АМ сигнал

, (4)

где  - уровень несущей АМ сигнала.

При использовании БМ в режиме фазового детектирования (рис. 3) на входы ПС подают напряжения одной и той же частоты, но со сдвигом фаз на угол . Пусть один из сигналов будет , а второй , тогда на выходе БМ получим

. (5)


Рис. 3. Фазовый демодулятор

Если с помощью ФНЧ отфильтровать составляющую с удвоенной частотой, то на выходе ФД получим постоянное напряжение, пропорциональное косинусу угла

. (6)

В случае необходимости с помощью полосового фильтра, как следует из выражения (5), можно получить удвоение частоты.

Возможность определения с помощью БМ фазового сдвига между напряжениями может быть использована для построения частотных демодуляторов ЧМ сигнала. Структурная схема частотного демодулятора (рис.4) включает широкополосный ограничитель 1, устраняющий возможное изменение амплитуды ЧМ сигнала и формирующий высокий уровень сигнала коммутации S1(t), полосовой фазосдвигающий фильтр 2, настроенный на частоту несущей (среднюю частоту) ЧМ сигнала, а также БМ 3 и ФНЧ 4.


Рис. 4. Частотный демодулятор

Полосовой фильтр (рис. 5) формирует второй сигнал S2(t), управляющий БМ. При высокой добротности фильтра фазовый сдвиг , вызываемый девиацией частоты  вблизи несущей , может быть записан в следующем виде

,

C1
 
где .


Рис. 5. Фазосдвигающий фильтр

Отфильтрованный ФНЧ сигнал оказывается пропорциональным девиации частоты входного сигнала

,

где К – коэффициент преобразования частотного демодулятора; UЧМ – входное напряжение ЧМ сигнала.

Реализация ПС в виде амплитудного модулятора на основе операционных усилителей и изменении проводимости полевого транзистора показана на рис.6. Здесь в качестве управляемого параметра используется проводимость канала ПТ, характеристика которой в режиме управляемого сопротивления аппроксимируется выражением


 . (7)

Рис. 6. Амплитудный модулятор на основе ПТ и ОУ

Пусть на один вход (в цепь стока ПТ) подается относительно высокочастотный (несущий) сигнал UC1(t), а на второй вход (в цепь затвора ПТ) посредством инвертирующего сумматора на ОУ2 с единичным коэффициентом передачи – низкочастотный (модулирующий) UC2(t) и постоянная составляющая напряжения U0

; (8)

; (9)

, (10)

где Um1, Um2 и ,  - амплитуды и частоты соответственно несущего и модулирующего сигналов.

Принимая во внимание (7)…(10) и учитывая, что между затвором и истоком ПТ действует напряжение , для выходного напряжения амплитудного модулятора в соответствии с формулой  можно записать

(11)

или

(12)

,

где Um0  и m – амплитуда несущей и глубина модуляции получаемого АМ колебания;

, (13)

. (14)

Для исследования спектрального состава АМ колебаний формулу (12) целесообразно заменить выражением (4), содержащим всего лищь три составляющих. Реально спектр (рис. 7) АМ сигнала модулятора помимо трех основных частот (4) содержит ряд других составляющих, отстоящих от несущей на величину, кратную частоте  модулирующего сигнала, что связано в основном с нелинейностью характеристики (7) ПТ.


Рис. 7. Спектр выходного сигнала амплитудного модулятора


Информация о работе «Теоретические основы построения модуляторов и демодуляторов»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 35345
Количество таблиц: 1
Количество изображений: 13

Похожие работы

Скачать
23938
0
7

а цифровых ИС можно реализовать практически любой алгоритм обработки сигнала, осуществляемый в приемно-усилительных устройствах, включая элементы оптимального радиоприема. Связные РПУ с частотной модуляцией проектируются для работы на одной фиксированной частоте или в диапазоне частот. В первом случае рабочая частота стабилизируется кварцевым резонатором, а для генерации ЧМ колебаний могут быть ...

Скачать
94052
15
3

... должен быть непосредственно связан с сетью, куда передается пакет. Разобравшись немного с теорией построения локальных сетей, перейдем к практической части построения локальной сети агентства недвижимости. 2. Организация локальной сети для агентства недвижимости   2.1 Постановка задачи Целью дипломной работы является организация локальной компьютерной сети для агентства недвижимости. Для ...

Скачать
53106
2
10

... ППИ. В случае обнаружения сбоев процессор выдает в определенный порт единицу, тем самым зажигая индикатор неисправности, и прекращает работу. При отсутствии неисправностей аппаратура готова к приему данных. Процесс передачи данных по каналу начинается после автоматического установления соединения с передающей станцией. УПС после принятия сигнала вызова включает цепь 125 «Индикатор вызова». В ...

Скачать
119269
7
35

... за которым следует устройство дискретизации (рисунок 4.2), подастся известный сигнал s(t) плюс шум AWGN n(t). 4.4 Межсимвольная интерференция На рисунке 4.3 а) представлены фильтрующие элементы типичной системы цифровой связи. В системе - передатчике, приемнике и канале - используется множество разнообразных фильтров (и реактивных элементов, таких как емкость и индуктивность). В передатчике ...

0 комментариев


Наверх