3 бита - помехоустойчивое кодирование сообщения.

4 бита – служебная информация, содержащая расстояние до объекта.

- скорость передачи цифрового сигнала, объем передаваемой информации

 

скорость передачи системы будет больше чем у систем передачи речи.

-           полоса частот группового сигнала ΔfΣ.

-           Параметры модуляции во второй ступени.

Во второй ступени модуляции используется двухпозиционная ЧМн. Выберем девиацию частоты

-           полоса частот радиолинии Δfрл.

В разрабатываемой системе используется адресный метод доступа к радиоканалу. Т.е. используются кодирование функциями Уолша, тогда:


где γ=2 – коэффициент, зависящий от формы импульса и способа обработки сигнала в приемнике.

Коэф.=1.1 – коэф. Учитывающий взаимной нестабильности несущей частоты излучаемого сигнала и частоты настройки приемника и доплеровского сдвига, который в данной системе составит Δfдопл= 20 Гц, при максимальной скорости объекта v= 10 м/с.

Nw = 9 – максимальный порядок функции Уолша, применяемой при передачи. Т.к. при использовании функций Уолша каждый бит передаваемой информации передается Nw количеством эфирных бит. В проектируемой системе функция Уолша 1-го порядка не используется, для скрытности работы системы.

Хотя использование функций Уолша и расширяет спектр сообщения, тем не менее система будет узкополосной.

1.2 Расчет энергетических характеристик

Качество выделения информации приемным устройством цифровой системы передачи информации, связано с вероятностью ошибки приёма разряда сообщения. Связь между допустимым значением вероятности ошибки Рд и пороговым отношением мощности сигнала к мощности шума h2пор =q2 для двухпозиционной ЧМн при некогерентном приеме может быть представлена в виде:

, (1.10)

из данного выражения выделим пороговое отношение h2пор:


 (1.11)

h2пор позволяет рассчитать необходимую мощность сигнала на входе приемника, если известна мощность его шумов. Но из - из флюктуаций сигнала в точке приема меняется во времени случайным образом. Характер изменения таков, что плотность вероятности мощности близка к плотности вероятности Релея.

Опираясь на формулы (4.3.3, 4.3.6. [1]), найдем h2раб.

 (1.12)

полученное значение h2раб, обеспечивает заданную надежность связи.

Найдем мощность шума, приведенную ко входу приемника, используя выражение (4.3.8 [1].)

 (1.13)

где N0 – спектральная плотность шумов, приведенных к входу приемника.

Спектральная плотность шума состоит из следующих составляющих, найденных из рис.1 [1]. для f=600МГц:

 (1.14)

где N01 – минимальные космические шумы.

N02 – шумы параметрических усилителей.

Расчет требуемой мощности излучаемого сигнала

Найдем рабочее значение удельной средней мощности передатчика. (4.3.9. [1]).


 (1.15)

где:

GA - – коэффициент направленного действия передающей антенны, находится по формуле с учетом рис. 1:

 (1.16)

Sэф – эффективная площадь приемной антенны.

, (1.17)

Рраб – рабочая мощность сигнала на входе приемника.

 (1.18)

Рпор – пороговая мощность сигнала на входе приемника

 (1.19)

η=0.2– коэффициент потерь энергии сигнала в антенно-фидерных трактах приемника и передатчика и при распространении радиоволн.

a,b- ширина диаграммы направленности антенны в горизонтальной и вертикальной плоскости в градусах. (Рис. 1)

Получив значение удельной средней мощности передатчика, найдем рабочую мощность передатчика, при условии, что в антенной системе используется 75 Ом фидер.


 (1.20)

Требуемая мощность не велика, значит источники питания на объектах будут работать долго, сокращая эксплуатационные расходы системы.

Расчет вероятности ошибки приёма кодовой группы при независимых ошибках приёма разрядов можно провести, используя равенство (4.3.10. [1]):

 (1.21)

Расчет относительной с.к.о. воспроизведения сообщения, вызванной действием шумовой помехи на цифровой сигнал, можно выполнить по формуле (4.3.12. [1]):

 (1.22)

Найдем эффективное значение результирующей относительной ошибки сообщения на выходе системы с учетом действия шумовой помехи;

 (1.23)

Полученное значение показывает, что наибольшие искажения при оцифровке непрерывных сообщений с помощью ДИКМ, а ошибки, возникающие при передачи сообщения незначительны.

Значит, система некритична к шумам, действующим в приемопередающем тракте.


1.3 Помехоустойчивое кодирование

В разрабатываемой системе для защиты передаваемой информации используется избыточное блочное кодирование. Применяется систематический код (25;22).

Оценка возможностей данного кода.

Систематические коды различаются по минимальному кодовому расстоянию dmin, которое определяется из следующих условий:

-           Необходимое условие (Граница Хейминга) (стр.182 [2])

, (1.24),

где r=3 – количество проверочных бит.

-           Достаточное условие (Граница Варшамова-Гильберта).

 (1.25),

Тогда подбирая значения dmin, добьемся выполнения условий (1.24, 1.25). Это выполняется при dmin=6.

Корректирующие коды можно одновременно использовать для обнаружения и исправления ошибок. Разрядность этих ошибок определяется из условия:

 (1.26)

где a – разрядность исправляемых ошибок.

b – разрядность обнаруживаемых ошибок, при условии что b>a.

Тогда выберем следующие значения:

a=2,

b=3.

Итак данный код способен одновременно обнаруживать двухразрядные и обнаруживать трехразрядные ошибки.

Определим вероятность не обнаружения ошибок данным кодом, которая вычисляется по формуле (8.28 [2]).

 (1.27)

Полученное значение, показывает, что при заданной РД ошибки кратности 4 и выше не возникают.

Определим вероятность появления ошибок, которые код обнаруживает, но не может исправить. Т.е. ошибки кратности 3 по формуле (8.27 [2]).

 (1.28)

Полученная вероятность ошибки пренебрежительно мала.

Полученные результаты позволяют сделать вывод:

-           полученный систематический код обнаруживает все ошибки.

-           исправляет практически все из обнаруженных ошибок.

-           Всем этим обеспечивается очень высокая помехоустойчивость передачи.

Поэтому в рассматриваемой системе будет реализован следующий способ коррекции:

Неправильно принятые пакеты будут стираться.


1.4 Основные параметры приемной и передающей антенн

На центральном пункте и на объекте применяются приемопередающие антенны представляющие собой элементы Гюгенса со следующими диаграммами направленности:

Определим параметры антенн:

-           Коэффициент направленного действия. Ga=2

-           Коэффициент полезного действия ηа=0,8

Итак, в проектируемой системе антенны на объекте и на ЦП одинаковые.

Сводные результаты расчета и выбора параметров функциональных устройств

-           ошибка временной дискретизации - δ1=0.0164

-           ошибка квантования сообщения - δ3=0.0251

-           пик фактор сообщения - Пх=2

-           частота дискретизации - Fд=825Гц

-           верхняя частота спектра сообщения после ограничения - Fв=106.4 Гц,

-           шаг квантования - hk=1.7

-            длительность пакета данных - Тк=1,2*10-3

-           длительность разрядного импульса - τп=48мкс

-           девиация частоты при ЧМн - Δfd=10КГц

-           полоса радиолинии - Δfрл=413КГц

-           рабочая частота - f=600МГц

-           пороговое отношение сигнал/шум - h2пор=24

-           рабочее отношение сигнал/шум - h2раб=478

-           КНД антенны - Ga=2

-           Эффективная площадь антенны - Sэф=0,04м2

-           Мощность излучаемого сигнала - Рпер=15Вт

-           вероятности ошибки приёма кодовой группы - Рош=4.8*10-6

-           относительная с.к.о. воспроизведения сообщения - δ=0,031


3. Временные диаграммы процессов 3.1 Структура канала трафика (передача информации с объекта на ЦП) Рис. 3. Структура канала трафика 3.2 Структура прямого канала управления (с ЦП на объект)

Рис. 4. Структура прямого канала управления

Библиографический список

1.  Методические указания и задания к курсовой работе по РЭСТК. УПИ 2001 г. 15 с

2.  Пенин П.И. Системы передачи цифровой информации. М.: Сов. Радио, 1976. 368 с.

3.  Радиосистемы передачи информации / под ред. И.М. Теплякова. М.: Радио и связь, 1982. 264 с.


Информация о работе «Расчет параметров радиотехнической системы»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 11552
Количество таблиц: 1
Количество изображений: 5

Похожие работы

Скачать
24568
1
0

... канала управления, способ его организации, протокол взаимодействия. СОДЕРЖАНИЕ СОДЕРЖАНИЕ. 4 ПЕРЕЧЕНЬ ИСПОЛЬЗУЕМЫХ СОКРАЩЕНИЙ. 5 Расчет параметров радиотехнической системы.. 6 1. Расчет параметров преобразования сообщения в цифровую форму. 6 2. Расчет параметров канала связи «объект - ЦП». 8 3. Расчет параметров радиолинии «ЦП - объект». 12 4. Выбор характеристик системы определения ...

Скачать
32349
1
17

... математического ожидания В этой части необходимо выбрать и рассчитать параметры преобразования аналогового сообщения в цифровой первичный сигнал (двоичный код) для передачи в информационном канале системы измерения и сбора информации. Сообщение представлено в виде реализации случайного стационарного процесса, заданного плотностью распределения своих мгновенных значений W(x) и спектральной ...

Скачать
33382
1
0

... (1.6.3), (1.6.5) могут быть решены относительно неизвестных lp0, и ln0, после чего из (1.6.4) определяется максимальное поле p-n-перехода. 1.7. Расчет параметров ступенчатого p-n-перехода. Наиболее просто определяется параметры ступенчатого p-n-перехода, так как в этом случае функция N(x) имеет вид: (1.7.1) а значение граничных условий концентрации ...

Скачать
119638
31
15

... .   ЗАКЛЮЧЕНИЕ В результате работы была создана компьютерная программа «Электродвигатель», позволяющая осуществлять расчет и исследование параметров энергосберегающего асинхронного двигателя с индивидуальными номинальными данными. В процессе работы были изучены ·        Методология проектирования и расчета параметров асинхронного двигателя ·        Язык PL/SQL СУБД Oracle 8i ·        ...

0 комментариев


Наверх