2. Принципы построения систем спутникового цифрового ТВ вещания

 

2.1 Методы формирования и передачи сигналов телевидения и звукового вещания

Стандарты сигналов спутникового ТВ вещания.

Стандартом ТВ сигнала называют совокупность определяющих его основных характеристик, таких как способ разложения изображения, число строк и кадров, длительность и форма синхронизирующих и гасящих импульсов, полярность сигнала, разнос между несущими частотами изображения и звукового сопровождения и метод модуляции последней, параметры предыскажающей цепи звукового сигнала и др. Для цветного телевидения добавляется метод передачи сигналов цветности совместно с сигналом яркости. В спутниковом вещании традиционно используются стандарты формирования ТВ сигнала, сложившиеся в наземном телевизионном вещании. Для черно-белого телевидения существует 10 стандартов, которые принято обозначать латинскими буквами В, D, G, Н, I, К, Kl, L, М, N.

По способу передачи сигналов цветности различают три системы цветного телевидения: SECAM, NTSC и PAL. Каждая из трех систем может применяться с любым из 10 стандартов черно-белого ТВ вещания, давая 30 возможных комбинаций. На практике применяются девять разновидностей PAL, шесть - SECAM и один стандарт из группы NTSC.

Системы SECAM, NTSC и PAL были разработаны для наземных ТВ сетей, использующих амплитудную модуляцию (AM) нecущей изображения, и не очень пригодны для спутниковых канатов где основной является частотная модуляция (ЧМ). При прохождении ЧМ сигнала через тракты с неравномерной амплитудной и нелинейной фазовой характеристикой возникают перекрестные искажения сигналов яркости и цветности, ухудшающие качество изображения. К тому же из-за треугольного спектра демодулированного шума при ЧМ сигналы цветности оказываются в области повышенной спектральной плотности мощности шума, что снижает помехоустойчивость приема этих сигналов

Во многих странах проводились поиски новых методов формирования ТВ сигнала, свободных от указанных недостатков Наилучших результатов ожидали от цифровых методов передачи. Однако для передачи цветного ТВ изображения с высоким качеством скорость цифрового потока должна составлять более 200 Мбит/с, что значительно превышает пропускную способность типового ствола спутникового ретранслятора с полосой пропускания 27.. .36 МГц. В качестве компромисса для первого поколения европейских систем непосредственного телевизионного вещания был разработан и принят комбинированный цифроаналоговый стандарт с поочередной передачей на периоде активной части строки сжатых во времени аналоговых сигналов яркости и цветности, получивший название MAC (Multiplexing Analogue Components — уплотнение аналоговых компонент). Сигналы звукового сопровождения, синхронизации, служебная и дополнительная информация передаются в цифровой форме. В зависимости от выбранного способа передачи звука и данных различают стандарты В-МАС, С-МАС, D- и D2-MAC. Подробнее об этом будет рассказано ниже.

В конце 80-х гг. был создан алгоритм цифрового сжатия, позволявший передать высококачественное изображение со скоростью 7...9 Мбит/с, изображение вещательного качества — со скоростью 3,5...5,5 Мбит/с и кинофильм (совокупность неподвижных изображений) со скоростью не более 1,5 Мбит/с. На основе этого алгоритма Международная организация стандартизации приняла два стандарта обработки ТВ изображения: MPEG1 для телевидения с невысокой разрешающей способностью и прогрессивной разверткой (компакт-диски, компьютерные игры, мультимедиа) и MPEG2 для вещательного телевидения с чересстрочной разверткой. Дальнейшим развитием MPEG2 стал европейский стандарт цифрового ТВ вещания (DVB), содержащий нормы на параметры модуляции, кодирования и передачи по каналам связи.

Передача ТВ сигналов в цифровой форме со сжатием

Создание эффективного алгоритма цифровой обработки ТВ сигнала стало возможным на основе достижений теории зрения и техники сверхбольших интегральных схем (СБИС). Алгоритм, положенный в основу стандартов MPEG, включает определенный базовый набор последовательных процедур, показанный на упрощенной структурной схеме цифрового кодера (рис. 2.1.).

Рис. 8.2. Упрощенная структурная схема цифрового кодера

В качестве исходного используется компонентный ТВ сигнал RGB, затем он матрицируется в сигнал YUV; дискретизация, как и в цифровом стандарте «4:2:2», осуществляется с тактовыми частотами 13,5 МГц для сигнала яркости и 6,75 МГц для цветоразностных сигналов. На этапе предварительной обработки удаляется информация, затрудняющая кодирование, но несущественная с точки зрения качества изображения. Обычно используется комбинация пространственной и временной нелинейной фильтрации.

Основная компрессия достигается благодаря устранению избыточности ТВ сигнала. Различают три вида избыточности — временную (два последовательных кадра изображения мало отличаются один от другого), пространственную (значительную часть изображения составляют однотонные одинаково окрашенные участки) и амплитудную (чувствительность глаза неодинакова к светлым и темным элементам изображения).

Временная избыточность устраняется передачей вместо кадра изображения его отличий от предыдущего кадра. Простое вычитание кадров было значительно усовершенствовано, когда заметили, что большая часть изменений, появляющаяся на изображении, может быть интерпретирована как смещение малых областей изображения. Разбив изображение на небольшие блоки (16 х 16 элементов) и определив их расположение в предыдущем кадре, можно для каждого блока найти набор параметров, показывающий направление и значение его смещения. Этот набор называют вектором движения, а всю операцию — предсказанием с компенсацией движения. По каналу связи передаются только вектор движения и относительно небольшая разность между текущим и предсказанным блоком. На этом этапе устраняется пространственная избыточность — разностный сигнал подвергается преобразованию из пространственной в частотную область, осуществляемому с помощью двумерного дискретно-косинусного преобразования (ДКП). ДКП преобразует блок изображения из фиксированного числа элементов в равное число коэффициентов. Это дает два преимущества. Во-первых, в частотной области энергия сигнала концентрируется в относительно узкой полосе частот (обычно на НЧ) и для передачи несущественных коэффициентов достаточно небольшого числа битов. Во-вторых, разложение в частотной области максимально отражает физиологические особенности зрения.

Следующий этап обработки заключается в адаптивном квантовании полученных коэффициентов. Набор коэффициентов каждого блока рассматривается как вектор, и процедура квантования производится над набором в целом (векторное квантование). Оценка показывает, что описанная процедура сжатия близка к теоретическому пределу сжатия информации по Шеннону.

Амплитудная избыточность исходного сигнала устраняется на этапе кодирования сообщения перед подачей его в канал связи. Не все значения вектора движения и коэффициентов блока равновероятны, поэтому применяется статистическое кодирование с переменной длиной кодового слова. Наиболее короткие слова присваиваются событиям с наибольшей вероятностью. Дополнительная компрессия достигается кодированием в виде самостоятельного символа групп нулей.

Отличительной чертой стандартов MPEG1 и MPEG2 является их гибкость. Они могут работать с параметрами разложения изображения 525 строк при 30 кадрах в секунду и 625 строк при 25 кадрах в секунду, пригодны для форматов изображения 4:3, 16 9 и др , допускают усовершенствование кодера без изменений в уже установленных декодерах.

Для спутникового телевидения более перспективным, безусловно является MPEG2, рассчитанный на обработку входного сигнала с чересстрочной разверткой и различными скоростями цифрового потока (4...10 Мбит/с и более), каждой из которых соответствует определенная разрешающая способность. По этому параметру в стандарте определены четыре уровня: низкий (на уровне бытового видеомагнитофона), основной (студийное качество), телевидение повышенной четкости с 1440 элементами на строку и полное ТВЧ с 1920 элементами. По сложности используемого алгоритма обработки стандарт содержит четыре профиля:

простой - согласно вышеописанному алгоритму; основной - с добавлением двунаправленного предсказания;

улучшенный основной - с улучшением либо отношения сигнал-шум, либо пространственного разрешения;

перспективный - с возможностью одновременной обработки цветоразностных сигналов.

На рис. 2.2. показаны соответствующие этим градациям максимальные значения разрешающей способности и скорости цифрового потока.

Рис. 2.2. Уровни и профили стандарта MPEG2: ТВЧ - телевидение высокой четкости; х - сочетание не используется.

Используемые алгоритмы позволяют гибко варьировать параметры сигнала в пределах одной градации шкалы рис. 2.2. В качестве примера на рис. 2.3 приведена зависимость качества изображения от, скорости цифрового потока (информационной) в режиме «основной уровень - основной профиль», наиболее употребительном сегодня в спутниковом телевидении.

Можно рассчитать, что в спутниковом канале с пропускной способностью 20...25 Мбит/с можно передать четыре-пять программ хорошего качества, соответствующего магистральным каналам подачи программ, пли 10...12 программ с качеством, соответствующим видеомагнитофону стандарта VHS.


Рис. 2.3. Зависимость качества изображения с цифровой компрессией от скорости цифрового потока.

Составной частью в стандарты MPEG1 и MPEG2 входят алгоритмы передачи звуковых сигналов с цифровой компрессией, позволяющие уменьшить скорость цифрового потока в шесть-восемь раз без субъективного ухудшения качества звучания. Один из широко используемых методов получил название MUSICAM.

Исходным сигналом является ИКМ последовательность, полученная стробированием исходного звукового сигнала с тактовой частотой 48 кГц и преобразованием в цифровую форму с точностью 16 бит/отсчет. Признано, что такой цифровой сигнал соответствует качеству звучания компакт-диска (CD-quality). Для эффективного использования спектра необходимо снизить максимальную скорость цифрового потока. Новая техника кодирования использует свойства человеческого восприятия звука, связанные со спектральным и временным маскированием. Шумы квантования динамически приспосабливаются к порогу маскирования, и в канале передаются только те детали звучания, которые могут быть восприняты слушателем. Эта идея реализуется в кодере. Здесь с помощью блока фильтров происходит разделение сигнала на 32 парциальных сигнала, которые квантуются в соответствии с управляющими сигналами психо - акустической модели человеческого слуха, использующей оценку порога маскирования для формирования этих управляющих сигналов. На выходе кодера из парциальных отсчетов формируется набор кодовых слов, объединяемый далее в кадр заданной длительности. Выходная скорость кодера в зависимости от требований качества и числа программ в канале может составлять 32, 48, 56, 64, 80, 96, 112, 128, 160 или 192 кбит/с на монопрограмму. Скорость 32 кбит/с соответствует обычному речевому каналу, 48 кбит/с — наземному AM вещанию. При скорости 256 кбит/с на стереопару не только обеспечивается качество компакт-диска, но и имеется значительный запас на последующую обработку.

Системная часть стандарта MPEG2 описывает объединение в единый цифровой поток отдельных потоков изображения, звука, синхронизации, данных одной или нескольких программ. Для передачи в среде с помехами формируется «транспортный» поток, включающий средства для предотвращения ошибок и обнаружения утерянных пакетов. Он содержит пакеты фиксированной длины (188 байт), содержащие стартовый байт, префикс (3 байта) и область полезных данных.

Перед подачей в канал связи сигнал подвергается дополнительному помехоустойчивому кодированию и поступает на модулятор. Эти операции не входят в стандарт MPEG и в разных спутниковых системах могут выполняться различными способами, что лишает эти системы аппаратурной совместимости. Европейским странам удалось решить эту проблему, разработав на базе MPEG2 стандарт многопрограммного цифрового ТВ вещания DVB, нормирующий все операции на передающей стороне вплоть до подачи сигнала на вход СВЧ передатчика.

В стандарте DVB применяется каскадное помехоустойчивое кодирование. Внешний код — укороченный код Рида-Соломона (204, 188) с t = 8, обеспечивающий «безошибочный» прием (вероятность ошибки на выходе менее 10 - 10 ) при вероятности ошибки на входе менее 10 - 3. Внутренний код — сверточный с относительной скоростью 1/2, 2/3, 3/4, 5/6 или 7/8 и длиной кодового ограничения К - 1, декодирование осуществляется по алгоритму Витерби с мягким решением. Вид модуляции — четырехпозиционная ФМ.

На приемной стороне декодер осуществляет все вышеописанные операции в обратном порядке, восстанавливая на выходе изображение, весьма близкое к исходному.

Основной областью использования цифрового телевидения стали системы непосредственного ТВ вещания в диапазоне 12 ГГц. В США уже функционирует первая такая система DirecTV/USSB, предоставляющая абонентам возможность приема более чем 170 ТВ программ. Производится внедрение методов цифровой обработки в европейских спутниковых системах.

Телевидение высокой четкости

Под телевидением высокой четкости (ТВЧ) понимают передачу изображения с числом строк, приблизительно вдвое превышающим показатель у существующих стандартов, и форматом кадра (отношение ширины кадра к его высоте) 16:9. Объем информации, содержащийся в каждом кадре ТВЧ изображения, возрастает в пять-шесть раз по сравнению с обычным телевидением. На ТВЧ изображении отсутствуют дефекты, свойственные принятым сегодня стандартам ТВ вещания, — недостаточная разрешающая способность, заметность поднесущей, перекрестные искажения сигналов яркости и цветности, мерцание изображения из-за недостаточно высокой частоты кадров, дрожание строк и т.д. ТВЧ обеспечивает существенное повышение качества ТВ изображения, приближая его восприятие к зрительному восприятию естественных, натуральных сцен и сюжетов. Такое радикальное улучшение качества изображения не может быть достигнуто ни модификацией существующих стандартных систем цветного ТВ, ни ТВ системами повышенного качества.

В США, Японии, европейских странах в последние пять-семь лет ведутся многочисленные разработки новых ТВ стандартов с улучшенным качеством изображения. Разработаны совместимые системы телевидения повышенного качества (ТВПК), в которых устранены наиболее характерные искажения ТВ сигнала, несколько увеличена разрешающая способность, введен формат изображения 16:9 (стандарты MAC, PAL-плюс). Эти системы нельзя отнести к ТВЧ, так как параметры разложения изображения не изменяются.

Среди систем ТВЧ с временным разделением наиболее известна и одно время даже претендовала на роль мирового стандарта японская система MUSE (Multiple Sub-Nyquist Sampling Encoding -кодирование с многократной субдискретизацией), предназначенная для передачи сигналов ТВЧ по спутниковому каналу с полосой 27 (24) МГц. Передача сигналов изображения в спутниковом канале осуществляется с помощью ЧМ, сигнала звукового сопровождения — методом четырехпозиционной ФМ. Основные характеристики сигнала MUSE:

Развертка...............................……… Чересстрочная с перемежением 2:1

Число строк исходного изображения .................... 1125

Частота полей, Гц .........................………............... 60

Формат изображения ..................…….................... 16:9

Разрешающая способность, пиксел:

--в канале яркости ........................…............ 1496

--в канале цветности ..................................... 374

Частота дискретизации, МГц …............................ 48,6

Полоса частот видеосигнала

по уровню — 3 дБ, МГц. ................……................8,1

Метод модуляции несущей ......…......................... ЧМ

Девиация частоты, МГц. ........……....................... 10,2

Полоса частот радиоканала, МГц ......................... 24

Необходимое отношение несущая - шум

на приеме. дБ .....................................…………...... 17

Число звуковых каналов ................………………. 2/4

Цифровая фазовая модуляция или фазовая манипуляция

Чтобы передавать данные с высокой скоростью, требуемой для цифрового спутникового ТВ, необходимо либо уменьшить число циклов на положение передаваемого сигнала, либо увеличить частоту передачи сигнала. Ясно, что увеличивать частоту передачи сигнала неразумно, поскольку существует ограничение ширины полосы пропускания канала. Существует также ограничение числа циклов, поскольку обычные демодуляторы, такие, как демодуляторы с фазовой автоподстройкой частоты, обладают ограниченной переходной характеристикой, и процесс захвата новой частоты может занять у них несколько циклов. В связи с тем, что каждую цифру необходимо передать не более, чем за один цикл, для захвата частоты просто недостаточно времени, поэтому следует признать, что применение FSK для спутникового ТВ было бы нецелесообразным, так как потребовало бы слишком широкой полосы частот. В этом случае нужно использовать цифровую систему передачи, которая позволяет увеличить скорость передачи данных без необходимости увеличения полосы частот. Сам модулирующий сигнал перед передачей можно сжать при помощи различных методов, но остается проблема, связанная с применением более эффективного метода модуляции, чем FSK (частотно фазовая манипуляция ). Таким методом может служить одночастотный вариант модуляции - цифровая фазовая модуляция, которую также называют фазовой манипуляцией (PSK). При данном методе изменяется фаза несущей, а не ее частота.

Фазовая модуляция (ФМ) имеет близкое отношение к частотной и хорошо подходит для многопозиционной цифровой передачи сигнала. Как и при ЧМ, анализ спектра является достаточно сложным и оба спектра оказываются похожими. Основной процесс фазовой манипуляции показан на рис. 2.4,а. Фаза несущей изменяется по цифровому сигналу сообщения. В данном примере сигнал двоичного 0 передается в качестве сигнала о сдвиге фазы несущей на 0°, а сигнал двоичной 1 представляет сдвиг фазы на 180°. Сдвиг фазы несущей на 180° можно осуществить путем ее умножения на -1 (инверсии). Поэтому если в сигнале сообщения для изменения бинарных положений 1 и 0 в положения -1 и +1 используется преобразование с отрицательной логикой, то двухфазовая PSK может осуществляться при помощи простого умножителя, как это показано на рис. 2.5,а. Изменение фазы, происходящее под воздействием сигнала сообщения, называется девиацией фазы, и ее величина может меняться при изменении чувствительности (крутизны характеристики) модулятора. В принципе,

ЧМ может выполняться путем интегрирования сигнала сообщения и подачи его на фазовый модулятор. И наоборот, фазовая модуляция может осуществляться путем дифференцирования сигнала сообщения и подачи его на частотный модулятор. Этим и объясняется сходство.

Рис 2.4. Фазовая манипуляция PSK (a), относительная фазовая манипуляция DPSK (б).

Процесс демодуляции в приемнике, показанный на рис. 2.5.б, можно выполнить, используя детектор произведения (перемножающий демодулятор), который эффективно перемножает принятый PSK сигнал с местной генерируемой опорной несущей, восстанавливая таким образом оригинальный сигнал сообщения.


Рис. 2.5. Модуляция методом PSK (a), демодуляция методом PSK (б).

Относительная фазовая манипуляция

При демодуляции трудно точно генерировать сигнал опорной несущей, о которой говорилось в предыдущем примере с использованием метода PSK. поскольку фазовые соотношения на любой частоте из-за понижающего преобразования могут медленно меняться при прохождении сигнала по линии связи. Решение данной проблемы состоит в использовании относительной фазовой манипуляции (DPSK), где изменения фазы происходят по отношению к фазе предыдущего положения передаваемого сигнала. Принцип действия DPSK для сравнения с методом обычной PSK показан на рис 2.4.б. Частота опорной несущей во время демодуляции восстанавливается только из предыдущего принятого положения сигнала, что в значительной степени устраняет воздействие непредсказуемых (случайных) изменений фазы на линии связи. Система работает следующим образом. Фазой опорной несущей для сигнала В является фаза сигнала А. Фаза опорной несущей для сигнала С - это фаза несущей В, и т. д. В действительности, значений фазовых сдвигов на 0° следует избегать, так как приемник всегда принимает сдвиги фазы на скорости передачи данных. Например, +90° и +270° для 0 и 1 могут быть использованы вместо 0° и 180°; таким образом исключаются длинные периоды немодулированной несущей, которые могут привести к значительной концентрации энергии в определенных участках спектра, в результате чего возникает интерференция.

Квадратурная фазовая манипуляция

Квадратурная фазовая манипуляция (QPSK или 4-PSK) представляет собой дальнейшее развитие метода PSK, в котором для заданной частоты несущей скорость передачи данных эффективно удваивается без увеличения скорости передачи сигнала. Недостатком данного метода является падение отношения S/N при демодуляции. При QPSK каждая позиция сигнала кодируется дибитом. Обычно используются четыре позиции (положения) сдвига фазы на 90°: +45°, +135°, +225° и +315°. Не забудьте, что положение фазы 0° редко используют на практике, чтобы исключить длинные периоды немодулированной несущей. Переход от двухпозиционной системы передачи сигнала к четырехпозиционной означает, что скорость передачи данных, измеряемая в битах в секунду, больше, чем скорость передачи сигнала в бодах. Фазовые соотношения в системе QPSK, где четыре дибита кодируются четырьмя значениями сдвига фазы, приведены в табл. 2.2. Основной принцип возможной реализации QPSK-модуляции сигнала показан на рис. 2.6. Две несущие одной и той же частоты, сдвиг фаз между которыми составляет 90°, поступают на пару умножителей. На каждый умножитель с одинаковой скоростью подаются цифровые входные сигналы +1 (сигнал двоичного 0) или -1 (сигнал двоичной 1), использующие, как и в предыдущих примерах, отрицательную логику. Выходные сигналы умножителей представляют собой такой же кодированный сигнал, как и в описанном ранее простом случае. То есть двоичная единица представлена сдвигом фазы на 180°, а двоичный нуль — сдвигом фазы на 0°. Основное отличие от обычной PSK состоит в том, каким образом эти выходные сигналы комбинируются сумматором. Сумматор создает окончательный выходной сигнал, соответствующий четырем возможным комбинациям сигнала сообщения, как это показано в табл. 2.2. Фазовая диаграмма (см. рис. 2.7.) представляет в фазовой форме положения табл. 2.3. и четко демонстрирует, как четыре значения сдвига фазы, или кодовых вектора, на +45°, +135°, +225° и +315° представляют дибит, получаемый от сложения двух выходных модулированных сигналов.


Рис. 2.6. Реализация метода QPSK модуляции.

Обратный процесс демодуляции приведен на рис. 2.8. Приходящие сигналы подключаются параллельно к двум перемножающим демодуляторам и генератору опорной несущей. Опорная несущая восстанавливается из принятого сигнала со скоростью передачи данных таким же образом, как это ранее было описано для метода DPSK. Эта несущая поступает непосредственно на один фазовый детектор и через схему сдвига фазы на 90° на другой фазовый детектор. Дибит восстанавливается путем проверки размера выходного сигнала с каждого перемножающего демодулятора со скоростью передачи данных, представленной в табл. 2.3. Преимущество метода QPSK заключается в возможности работы при мощности транспондера, близкой к насыщению (максимальное значение мощности), поэтому данный метод обладает высокой эффективностью использования энергии. Кроме того, он хорошо подходит для двойной поляризации, поскольку имеет очень низкую чувствительность к интерференции от других цифровых систем.

Рис.2.7. Фазовая диаграмма QPSK модуляции.


Таблица 2.2. Изменения фазы, производимые положениями передаваемого сигнала в QPSK.

Таблица 2.2. Таблица выходных сигналов демодулятора.

Рис. 2.8. Демодуляция сигнала QPSK.


Информация о работе «Расчет линии связи для системы телевидения»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 128945
Количество таблиц: 1
Количество изображений: 27

Похожие работы

Скачать
100238
3
16

... большое количество способов компенсации дисперсии. Их можно разделить на следующие три класса [7]: -      способы компенсации дисперсии, основанные на управлении пространственным распределением дисперсии волоконно-оптической линии связи (ВОЛС) для обеспечения нулевого суммарного (интегрального) значения дисперсии для всей линии; -      способы компенсации дисперсии, основанные на управлении ...

Скачать
107249
12
24

... сигналов, разделенных по частоте, времени или форме и оказывающих взаимное влияние, которое должно учитываться при расчете энергетики спутниковых линий.  В настоящей главе приводится расчет спутниковой линии ЗС1 (Алматы) – ИСЗ (Іntelsat-804) - ЗС2 (Лондон) по участкам (3). Исходные данные для расчета: Географическое расположение ЗС 1 (Алматы) Широта (Север) 43°13' Долгота ( ...

Скачать
119446
17
0

... и недостатков этой технологии, а также методов продвижения исследуемой технологии на российский рынок. В результате была спроектирована локальная компьютерная сеть с доступом в Internet на основе существующих сетей кабельного телевидения. Данная модель сети уже реализована в микрорайоне Заречный города Екатеринбурга и явилась первой в России сетью такого рода доведенной до коммерческой ...

Скачать
11134
3
0

... замираний 2.5 Расчет величины Тд(Vmin). 2.6 Расчет уровней сигнала на входе Выводы по проделанной работе Список литературы ВВЕДЕНИЕ Одним из основных видов средств связи являются радиорелейные линии прямой видимости, которые используются для передачи сигналов многоканальных телефонных сообщений, радиовещания и телевидения, телеграфных и фототелеграфных сигналов, передача газетных полос. ...

0 комментариев


Наверх