1.2 Краткое описание параметров системы связи

В данном пункте вводятся основные понятия цифрового ТВ вещания (DVB – Digital Video Broadcasting), которое более подробно освещено в основной части курсового проекта.

В ближайшее время ожидается быстрый переход к цифровому ТВ вещанию (DVB) с использованием международных стандартов сжатия данных и цифровой (фазовой) модуляции сжатых сигналов MPEG-2 (ISO/IEO 13818) (MPEG – Moving Picture Expert Group. Специальная группа экспертов по вопросам кинотехники; алгоритм и группа стандартов сжатия видео изображений и звука). Эти стандарты приняты в Европе и многих других странах для передачи цифрового ТВ сигнала через спутники и кабельные системы. Поскольку применение данных стандартов обеспечивает экономное использование полосы частот и высокую помехоустойчивость, существуют планы по их распространению на наземное ТВ вещание.

Первое поколение бытовых приемных устройств DVB представляет собой настольные модели совмещенных приемников/декодеров (IRD). Приемники имеют стандартные разъемы ВЧ и SCART для подсоединения к антенне, кабелю и ТВ/ВМ (TV/VCR). В моделях высокого класса устанавливается разъем для подключения персонального компьютера, так что их можно использовать для мультимедийных средств и подключения к Internet. Спутниковые каналы идеально подходят для доставки страниц Всемирной паутины, поскольку они обеспечивают широкую полосу пропускания.

Скорость передачи данных, применяемая для ТВ вещания, может быть выбрана в зависимости от требований, предъявляемых ТВ вещателями к качеству сигнала. Видеосигналы VHS хорошего качества могут быть получены при скорости передачи данных 2 Мбит/с. Стандартное качество сигналов PAL/SECAM/NTSC получается при скорости передачи данных в диапазоне 4-6 Мбит/с. Студийное качество сигналов D2-MAC и PAL+ может быть получено на скорости в 8 Мбит/с. Для передачи сигналов телевидения высокой четкости (HDTV) понадобилась бы максимальная скорость передачи данных в 15 Мбит/с.

Для кодирования звука применяется алгоритм второго уровня MPEG 11 (ISО/IЕО 13818-2), который основывается на системе поддиапазонного кодирования MUSICAM. Для обеспечения качества звука, примерно соответствующего качеству CD, необходима скорость передачи данных порядка 192 Кбит/с.

Стандарт MPEG-2 позволяет объединить потоки многих видеосигналов, звуковых сигналов и сигналов передачи данных в единый транспортный поток для передачи через спутниковый канал связи. Данный метод уплотнения позволяет передавать таким образом много различных программ через один поток 38.01 SM бит/с на одном транспондере спутника связи. Примерный состав транспортного потока, который используется в Европе, приведен в табл. 1.2.

Таблица 1.2. Состав транспортного потока

Основным методом модуляции, принятым для передачи по спутниковым каналам, является метод QPSK (квадратурная фазовая манипуляция), а для передачи по кабельным сетям 64-QAM (квадратурная амплитудная модуляция).


1.3 Краткое описание технических средств, используемых в данной системе связи

Важнейшие показатели земных станций (ЗС).

Большинство ЗС ФСС работает в диапазонах 4 или 11 ГГц на прием и 6 или 14 ГГц на передачу.

Добротность станции на прием G/T — отношение усиления антенны (в децибелах на частоте приема) к суммарной шумовой температуре станции (в децибелах относительно 1 К); достигает 42 дБ/К для самых больших применяемых на практике антенн (диаметром 32 м) и составляет 20…31,7 дБ/К для ЗС большинства национальных и региональных систем.

Эквивалентная изотропно излучаемая мощность (ЭИИМ) — произведение мощности передатчика на усиление антенны (в полосе передачи) относительно изотропной антенны; обычно находится в пределах 50.. .95 дБВт. Для упрощенного расчета помех, создаваемых другим сетям связи, часто указывают максимальную спектральную плотность излучаемой ЗС ЭИИМ (Вт/Гц), хотя точный расчет перекрестных помех требует знания структуры применяемых в системе сигналов (вида и параметров модуляции и т.п.).

Микроволны и место приема сигналов.

Передача сигналов от спутника на Землю осуществляется посредством микроволнового электромагнитного излучения, которое по частоте намного выше, чем сигналы обычного телевещания в диапазонах MB/ДМВ (VHF/UHF). Несмотря на волнообразную природу микроволны подвергаются сильному ослаблению из-за водяных испарений и других препятствий на линии прямой видимости антенны. Мощность передаваемого микроволнового сигнала ко времени достижения им Земли становится чрезвычайно слабой. Если не использовать специальное оборудование и не принимать соответствующие меры предосторожности при его установке, сигнал может быть подавлен окружающими его шумами. На месте приема телевизионной приемной системы (TVRO) устанавливается антенна, которая собирает и концентрирует сигнал в фокусе, где находится прецизионно установленный облучатель. Он направляет микроволны на электронный компонент, называемый малошумящим блоком (LNВ). Этот блок усиливает и преобразует сигнал вниз на частоту, которая более удобна для передачи далее по кабелю на приемник (ресивер), расположенный внутри жилого помещения.

Между облучателем и LNB может быть расположен поляризатор, назначение которого будет объяснено чуть позже. Комплект, состоящий из облучателя, поляризатора и LNВ, часто называют головкой облучателя. Типичная конфигурация линии связи вниз от спутника средней мощности до внутреннего помещения изображена на рис. 1.3.1.

Рис. 1.3.1. Типичная конфигурация линии связи вниз.

Антенна, или тарелка, собирает чрезвычайно слабый микроволновый сигнал и осуществляет его фокусировку. Поверхность антенны должна иметь высокую отражающую способность по отношению к микроволнам. Антенна имеет форму параболоида, который обладает уникальным свойством переносить все излучение, падающее параллельно его оси, в фокус (см. рис. 1.3.1). Существует два основных типа антенн - параболическая (прямофокусная) и офсетная (антенна со смещенным фокусом). В прямофокусной антенне датчик головки облучателя устанавливается в центре оси параболоида. При конфигурации со смещенным фокусом (см. рис. 1.3.1) головка облучателя устанавливается в фокальной точке параболоида значительно большего размера, а рассматриваемая тарелка представляет собой часть этого параболоида. Антенны обычно изготавливаются из стали, алюминия или оптоволоконного стекла с впрессованной отражающей фольгой.

Диаметр антенны оказывает решающее влияние на размеры и стоимость ЗС; он определяет добротность и ЭИИМ станции, а также ее пространственную избирательность; если в системе используется разделение сигналов по поляризации, необходимо знать кросс - поляризационные характеристики антенны и указывать, с какой поляризацией станция работает на передачу и на прием. На ЗС телефонного обмена применяют антенны диаметром от 1,5.. .2,5 м до 12 м, иногда до 32 м, на ЗС приема циркулярной информации - от 0,45 до 2,5. ..4м.

Антенна характеризуется также показателями опорно-поворотного устройства и всей системы наведения антенны на ИСЗ; различают антенны полноповоротные, способные направляться в любую точку небосвода, и неполноповоротные, имеющие ограниченную область оперативного наведения на источник сигнала; системы наведения антенн характеризуются также возможной скоростью и ускорением углового перемещения. В последние годы все чаще применяют неполноповоротные, медленно движущиеся и неподвижные антенны, пригодные для работы только с геостационарными ИСЗ.

Основные показатели космических станций (КС).

В основном космическая станция характеризуется теми же показателями, что и ЗС: рабочим диапазоном частот, добротностью, ЭИИМ каждого передатчика, поляризацией излучаемых и принимаемых сигналов. Однако значения ряда параметров существенно отличны от указанных для ЗС. Например, добротность приемного тракта КС обычно составляет -10 ... + 6 дБ/К (что вызвано не только меньшими размерами антенны, но и применением более простого и обладающего большей шумовой температурой входного малошумящего усилителя), ЭИИМ, как правило, не превышает 23.. .45 дБВт, достигая 52... 58 дБВт на спутниках непосредственного телевизионного вещания.

Важной характеристикой бортового ретранслятора космической станции является число стволов.

Стволом ретранслятора или ЗС, или стволом спутниковой связи, будем называть приемопередающий тракт, в котором радиосигналы проходят через общие усилительные элементы (общий передатчик) в некоторой выделенной стволу общей полосе частот. Весь диапазон частот, в котором работает спутник связи, принято делить на некоторые полосы (шириной 27. ..36, 72... 120 МГц), в которых усиление сигналов осуществляется отдельным трактом - стволом. Несколько стволов могут иметь общие элементы - антенну, волноводный тракт, малошумящий входной усилитель. С другой стороны, на ЗС полоса одного ствола может разделяться фильтрами для выделения и последующего детектирования сигналов от различных земных станций, проходящих через общий ствол ИСЗ (при частотном многостанционном доступе).

Вместо термина «ствол» часто применяется английский термин «транспондер».

Число стволов, одновременно действующих на ИСЗ, может составлять 6-12, достигая 27- 48 на наиболее мощных ИСЗ. Сигналы этих стволов разделяются по частоте, пространству, поляризации, числом стволов, их полосой пропускания и ЭИИМ определяется в основном важнейший суммарный показатель ИСЗ - его пропускная способность, т.е. число телефонных и телевизионных каналов, либо в более общем виде число двоичных единиц в секунду, которое можно передать через данный ИСЗ. Разумеется, о пропускной способности ИСЗ можно говорить лишь условно, поскольку она зависит от добротности применяемых в системе земных станций, а также от вида применяемых радиосигналов; пропускная способность, по существу, - характеристика системы, а не ИСЗ. Тем не менее в литературе часто используется понятие пропускной способности (емкости) ИСЗ.

Отметим, что пропускная способность ствола ИСЗ зависит в некоторой степени не только от основных показателей - полосы пропускания и ЭИИМ, но и от других параметров, определяющих искажения передаваемых сигналов: неравномерности амплитудной характеристики, коэффициента АМ-ФМ преобразования, неравномерности ГВЗ в полосе ВЧ ствола и др. Эти параметры влияют на взаимные помехи между сигналами различных ЗС, на достоверность приема сигналов и тем самым на энергетические потери, обусловленные прохождением сигналов через неидеальный тракт бортового ретранслятора ИСЗ.

В зависимости от ширины диаграммы направленности бортовых антенн ИСЗ (или его отдельный ствол, если на борту несколько антенн и они различны) характеризуется зоной покрытия - частью поверхности земного шара, в пределах которой обеспечивается уровень сигналов от ИСЗ, необходимый для их приема с заданным качеством на ЗС определенной добротности, а также гарантируется способность принять на входе ИСЗ сигналы от ЗС, обладающих определенной ЭИИМ. Очевидно, что зона покрытия ИСЗ характеризует систему спутниковой связи, а не только собственно ИСЗ.

Зона покрытия определяется шириной диаграммы направленности антенны ИСЗ и рассчитывается как пересечение поверхности Земли конусом луча антенны. Форма этого сечения зависит от точки размещения ИСЗ, «точки прицеливания» — точки пересечения оси главного лепестка антенны ИСЗ с земной поверхностью, а также от нестабильности положения ИСЗ и ориентации его антенн. В связи с нестабильностью вводится понятие гарантированной зоны обслуживания, в которой обеспечивается сохранение указанных ранее условий приема и передачи при любых сочетаниях отклонений ИСЗ и антенны ИСЗ от среднего положения.

Точка размещения ИСЗ на орбите, точка прицеливания его антенны, нестабильности этих параметров существенны не только для расчета зон обслуживания, но и для расчета взаимных помех между ССС. Для упрощенного расчета взаимных помех часто также указывается максимальная спектральная плотность излучаемого ИСЗ потока мощности (Вт/м2Гц).

Наконец, важнейшим показателем ИСЗ, определяющим не только надежность и бесперебойность связи, но прежде всего экономические характеристики всей системы связи, является срок службы ИСЗ — время наработки до отказа спутника целиком либо допустимого числа стволов космической станции, определяемое с высокой вероятностью — обычно 0,9 и более. В современных ИСЗ достигнут срок службы 10... 12 лет и более благодаря высокой надежности элементов, гибкой и разветвленной схеме резервирования.

Основные показатели систем спутниковой связи.

Зона обслуживания системы — это совокупность (объединение) зон обслуживания отдельных ИСЗ, входящих в систему (рис. 1.3.2.). Слово «объединение» (а не «сумма») употреблено потому, что зоны отдельных ИСЗ обычно перекрываются между собой (что неизбежно при достижении сплошного покрытия и полезно для организации связи между земными станциями, расположенными в различных зонах), и поэтому общая зона оказывается по площади меньше суммы площадей отдельных зон.


Рис.1.3.2. К определению зоны обслуживания системы спутниковой связи с несколькими ИСЗ.

 

Пропускная способность системы есть объединение пропускных способностей входящих в систему ИСЗ. В данном случае слову «объединение» (а не «сумма») придается тот же смысл. Пропускная способность системы оказывается меньше суммы пропускных способностей отдельных ИСЗ, поскольку для связи между собой станций, работающих через разные ИСЗ, часть каналов транслируется двумя КС последовательно — с помощью двухскачковых линий (Земля-ИСЗ-Земля-ИСЗ-Земля) или прямых межспутниковых соединений (Земля-ИСЗ-ИСЗ-Земля).

Если в ССС используется только один ИСЗ, зона обслуживания и пропускная способность системы и ИСЗ совпадают.

Пропускная способность системы зависит в некоторой степени от воздействия помех, создаваемых другими ССС; роль этих помех возрастает по мере увеличения числа спутников на орбите.

Далее, система спутниковой связи характеризуется числом и размещением ЗС, числом ИСЗ и типом их орбиты, точкой размещения на геостационарной орбите. Характеристикой системы являются также число стволов на ИСЗ, их полоса пропускания, полосы частот стволов на участках Земля-спутник и спутник-Земля.

Одной из важнейших характеристик системы является метод многостанционного доступа — метод совмещения сигналов, излучаемых различными ЗС, для их прохождения через общий ствол бортового ретранслятора космической станции. Многостанционный доступ (МД) применяют потому, что обычно оказывается неэкономичным создавать число стволов на ИСЗ, равное числу ЗС в системе. Применяют МД с разделением сигналов по частоте, форме и времени. Всякий способ МД приводит к потере пропускной способности ствола до 3... 6 дБ, хотя в наиболее совершенных системах (с временным разделением - МДВР) эти потери могут не превышать 0,5...2 дБ.

На энергетические характеристики системы связи, необходимую полосу частот, ее электромагнитную совместимость с другими системами существенно влияют применяемый метод модуляции; наиболее распространены частотная модуляция (ЧМ) при передаче сообщений в аналоговой форме и фазовая модуляция (ФМ) при передаче сообщений в дискретной форме. Из параметров модуляции важнейшее значение при ЧМ имеет девиация частоты, при ФМ - число фаз несущей (кратность модуляции), а при передаче программ телевидения — также способ передачи звукового сопровождения (временное или частотное совмещение с видеосигналом, частота поднесущей и т.п.). Метод модуляции и параметры модулированного сигнала должны быть согласованы с полосой пропускания и энергетикой стволов системы связи.

Другой важнейшей характеристикой системы является качество организуемых в ней каналов передачи сообщений — телевизионных, телефонных и др. Обычно ССС используется для создания международных либо междугородных каналов связи большой протяженности, и качество этих каналов соответствует требованиям, сформулированным в рекомендациях Международного союза электросвязи (МСЭ) или во внутригосударственных нормативных документах. Однако в некоторых системах спутниковой связи исходя из их специфического назначения или из экономических соображений достигаются более высокие либо допускаются более низкие показатели качества. Так, в системах телевизионного вещания с приемом сигналов простыми коллективными и особенно индивидуальными установками часто допускается пониженное отношение сигнал-шум; это, в частности, рекомендовано планом систем спутникового вещания, принятым Всемирной административной конференцией по радио в 1977 г.; аналогичное решение принято в советской системе «Экран». Причиной снижения отношения сигнал-шум является не только желание уменьшить стоимость приемной станции, но и возможность сохранить при этом достаточно высокое качество приема у абонента. Действительно, приемная станция такой системы приближена к абоненту, спутниковая линия заменяет не только междугородную наземную линию, но и часть распределительной сети, упрощается либо вовсе исключается наземный телевизионный передающий центр.

В некоторых ССС, построенных на основе частотного многостанционного доступа и передачи каждого канала на отдельной несущей, применяют шумоподавители (компандеры), действие которых основано на особенностях восприятия шумов при звуковом сигнале. Компандеры позволяют уменьшить заметность шумов на 10. ..20 дБ и соответственно выиграть в энергетике линий связи и пропускной способности системы связи, но делают каналы не универсальными, поскольку указанный выигрыш не реализуется при передаче по каналам тональной частоты телеграфных сообщений, данных и др. С другой стороны, именно в спутниковых системах возможна и осуществляется передача телевизионных сигналов повышенного качества и высокой четкости.


Информация о работе «Расчет линии связи для системы телевидения»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 128945
Количество таблиц: 1
Количество изображений: 27

Похожие работы

Скачать
100238
3
16

... большое количество способов компенсации дисперсии. Их можно разделить на следующие три класса [7]: -      способы компенсации дисперсии, основанные на управлении пространственным распределением дисперсии волоконно-оптической линии связи (ВОЛС) для обеспечения нулевого суммарного (интегрального) значения дисперсии для всей линии; -      способы компенсации дисперсии, основанные на управлении ...

Скачать
107249
12
24

... сигналов, разделенных по частоте, времени или форме и оказывающих взаимное влияние, которое должно учитываться при расчете энергетики спутниковых линий.  В настоящей главе приводится расчет спутниковой линии ЗС1 (Алматы) – ИСЗ (Іntelsat-804) - ЗС2 (Лондон) по участкам (3). Исходные данные для расчета: Географическое расположение ЗС 1 (Алматы) Широта (Север) 43°13' Долгота ( ...

Скачать
119446
17
0

... и недостатков этой технологии, а также методов продвижения исследуемой технологии на российский рынок. В результате была спроектирована локальная компьютерная сеть с доступом в Internet на основе существующих сетей кабельного телевидения. Данная модель сети уже реализована в микрорайоне Заречный города Екатеринбурга и явилась первой в России сетью такого рода доведенной до коммерческой ...

Скачать
11134
3
0

... замираний 2.5 Расчет величины Тд(Vmin). 2.6 Расчет уровней сигнала на входе Выводы по проделанной работе Список литературы ВВЕДЕНИЕ Одним из основных видов средств связи являются радиорелейные линии прямой видимости, которые используются для передачи сигналов многоканальных телефонных сообщений, радиовещания и телевидения, телеграфных и фототелеграфных сигналов, передача газетных полос. ...

0 комментариев


Наверх