4. Расчёт надежности

Микросхемы стали основной элементной базой современной РЭА прежде всего благодаря своей высокой надежности. Надежность зависит от многих факторов: совершенства разработки электрической схемы и конструкции, физико-химической совместимости материалов, отработанности и стабильности технологического процесса изготовления, методов контроля качества.

Групповой способ изготовления десятков тысяч микросхем в едином технологическом цикле, в строго контролируемых технологических средах и режимах обеспечивает примерно равную надежность как всех кристаллов в партии микросхем, так и элементов в каждом из кристаллов.

Как известно, одним из основных источников отказов аппаратуры являются межсоединения плат и комплектующих изделий. Внутри микросхемы соединение элементов между собой осуществляется методом осаждения пленок металлов, а соединение элементов с выводами корпуса – методом термокомпрессионной или ультразвуковой микросварки. Эти методы обеспечивают надежное сцепление с поверхностью кристалла и другими пленками и соединение металлов на молекулярном уровне. Число межсоединений на кристалле в тысячи раз превышает число выводов корпуса микросхем. Для большинства типов микросхем характерно низкое потребление мощности. При малой мощности рассеяния рабочая температура кристалла по сравнению с температурой окружающей среды повышается незначительно, поэтому создаются благоприятные условия для замедления физико-химических процессов, приводящих к отказу.

Применение высоконадежных микросхем не всегда автоматически обеспечивает выпуск столь же надежной аппаратуры. Сохранение надежности микросхем в аппаратуре в значительной степени определяется соблюдением рекомендаций по их конструктивно-технологическому применению, режимам и условиям работы.

Реальный уровень надежности микросхем проявляется лишь при эксплуатации аппаратуры. Часто безотказность микросхем различных серий (их изготавливают на разных заводах) практически одинакова в приборах, изготовленных на одном и том же предприятии-изготовителе РЭА. Однако, как показывает статистика, надежность микросхемы одной и той же серии (одного предприятия) оказывается весьма различной в составе комплектов аппаратуры, изготовленных разными заводами. Это следствие различия технологической культуры производства аппаратуры.

Достижение и поддержание максимальной эксплуатационной надежности микросхем (следовательно, и аппаратуры) существенно зависят от проектирования аппаратуры, подготовки производства и наладки оборудования, квалификации персонала, обработанности технологического процесса изготовления аппаратуры, использования средств защиты микросхем от статического электричества, тепловых и других воздействий.

Свойство электронной аппаратуры выполнять возложенные на нее функции, сохраняя свои эксплуатационные показатели в течение заданного промежутка времени в пределах, установленных в техническом задании или технических условиях, называется надежностью.

Надежность аппаратуры обычно связывается с понятиями работоспособности, безотказности, ремонтопригодности и долговечности.

Под работоспособностью понимается состояние, при котором она способна выполнять возложенные функции с параметрами, установленными требованиями технической документации.

Свойство сохранять работоспособность в течение некоторого времени наработки без вынужденных простоев называется безотказностью.

Поскольку большинство типов электронной аппаратуры эксплуатируется длительное время, многократно включаются и выключаются, то возможные случаи нарушения состояния работоспособности сопровождаются ремонтом. Поэтому надежность аппаратуры оценивается так же ремонтопригодностью. Надежность аппаратуры на ряду со свойствами безотказности и ремонтопригодности определяется так же свойством долговечности – сохранением работоспособности в течение срока эксплуатации.

Показателями долговечности являются технический ресурс и срок службы.

В соответствии с расчетной схемой вероятность безотказной работы системы определяется как произведение вероятностей безотказной работы отдельных элементов:

где, n – количество элементов в схеме;

Pi – вероятность безотказной работы i-го элемента схемы.

Для элементов, используемых в разработанном устройстве из справочных данных статистической интенсивности отказов, следующие величины представлены в таблице 7.1.

Таблица 7.1.

Наименование элементов Кол-во элементов Интенсивность отказов
Микросхема серии КР531ГГ1 1

Микросхема серии КР142ЕН5А 1

Микросхема серии AD8055 1

Микросхема серии К1533ЛА3 2

Микросхема серии AT89C2051 1

Микросхема серии M5450B7 1

Диоды 4

Резисторы 7

Конденсаторы 13

Резонаторы 2

Паяльные соединения 416

Тогда общая интенсивность отказов:

λобщ = (1· 3,6 + 1· 3,8 + 1 · 3,8 + 2 · 3,8 + 1 · 3,4 + 1 · 4,0 +

+4· 0,4 + 7· 0,4 + 13 · 3,0 + 2· 0,4 + 416 ·0,4) · 10=

= 0,9398 · 10

Среднее время наработки на отказ рассчитывается по формуле:

 час.

Вероятность безотказной работы прибора рассчитывается по формуле:

,

где, Тk – время контроля (500 ч.).

Вероятность безотказной работы прибора составляет:

Произведенный расчет надежности показала, что проектируемый программно-управляемый частотомер имеет среднее время наработки на отказ 10640,56 часов (по техническому заданию не менее 10000 часов), вероятность безотказной работы 0,95.


5. Требования безопасности

Конструктивное исполнение устройства в соответствии с ГОСТ 12.1.006-87 должно обеспечивать его пожарную безопасность в аварийном режиме и при нарушении правил эксплуатации.


6. Маркировка

Маркировка устройства должна соответствовать комплекту конструкторской документации и ГОСТ 26828-86.

Маркировка клемм подсоединения должна проводиться в соответствии с электрической принципиальной схемой устройства.

Способ и качество маркировки должны обеспечивать четкость и сохранность ее в течение всего срока службы устройства.

Маркировка потребительской тары должна соответствовать требованиям ГОСТ 26828-86


7. Упаковка устройства

Способ упаковывания устройства, паспорта, памятки, комплекты принадлежностей, подготовка их к упаковыванию, потребительская, транспортная тара и материалы, применяемые при упаковывании, порядок размещения и маркировка должны соответствовать комплекту конструкторской документации и ГОСТ 26828-86. ГОСТ 23170-78. ГОСТ 9.014-78.

БИ, БФ, паспорт с памяткой и комплектом принадлежностей, должны быть помещены в пакеты из полиэтиленовой пленки ГОСТ 10354-82. Края пакетов должны быть заварены.

БИ, БФ, паспорт с памяткой и комплектом принадлежностей в полиэтиленовых пакетах должны быть помещены в потребительскую тару – коробку из картона по ГОСТ 12301-81.

На ящик должна быть наклеена этикетка, выполненная согласно конструкторской документации, внутрь каждого ящика должен быть помещен упаковочный лист, содержащий следующие данные:

-  наименование и обозначение устройства;

-  количество мест в партии;

-  номера;

-  дату упаковывания;

-  подпись или штамп ответственного за упаковывание.

Транспортная тара внутри должна быть выстлана бумагой битумированной ГОСТ 515-77. Промежутки между потребительской тарой и стенками ящика должна быть заполнены обрезками картона.

Упаковка должна обеспечивать сохранность устройства на весь период транспортирования, а также его хранение в течение установленного срока.

Масса брутто должна быть не более 8 кг.


8. Транспортировка и хранение

В упакованном виде изделие может транспортироваться речным, воздушным, автомобильном железнодорожном видами транспорта.

Транспортирование должно производится в соответствии с требованиями, изложенными в следующих документах: «Правила перевозки грузов», утвержденными Министерством речного флота; «Руководство по грузовым перевозкам на внутренних воздушных линиях», утвержденными Министерством гражданской авиации; «Общие правила перевозки грузов автотранспортом», утвержденными Министерством автомобильного транспорта; «Правила перевозки грузов», утвержденными министерством путей сообщения (МПС).

Транспортирование железнодорожным транспортом должно производиться в крытых вагонах или контейнерах, при этом крепление грузов должно производиться в соответствии с «Техническими условиями погрузки и крепления грузов», утвержденными МПС.

Изделия должны храниться на стеллажах в закрытых вентилируемых помещениях при температуре окружающей среды от +15 °С до +40 °С и относительной влажности до 80 % и отсутствии в окружающей среде агрессивных примесей.


Литература

1. «Дипломное проектирование. Методические указания для студентов специальности Информационно-измерительная техника и технология». МГОУ, 2004 год.

2. Контрольно-измерительная техника. Под ред. Б.И. Горбунова. - М.: Высшая школа, 1987 г.

3. Хромой Б.П., Моисеев Ю.Г. Электрорадиоизмерения: Учебник для техникумов. – М.: Радио и связь, 1985 г.

4. Ермолаев Р.С. Цифровые измерительные приборы. Л., «Энергия», 1981г.

5. Попов В.С. Электрические измерения. Учебник для техникумов. – М.: «Энергия», 1984 г.


Информация о работе «Программно управляемый частотомер»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 50623
Количество таблиц: 2
Количество изображений: 4

Похожие работы

Скачать
45764
6
7

... наличия напряжений питания Х3, Х5: +5В; +12В; -12В; +3.3 В. Размер печатной платы: 112 х 90 мм. Разрабатываемый макет также может использоваться в качестве универсального программируемого модуля для разработки различных РЭУ, а также в качестве измерительного контроллера часов, датчиков температуры и других подобных приложений бытовой техники и автоматики. Кроме того, удобен в применении, ...

Скачать
72188
6
20

... является измерение сдвига частоты. То есть в качестве сенсорного эффекта в данном типе датчиков используется различие рабочих частот поверхностно-акустической волны прибора в различных средах. Некоторые задачи, решаемые ПАВ сенсорами В работе [6] авторами решена задача классификации ароматов и определения степени свежести пищевых продуктов по запаху с использованием аналитической микросхемы, ...

Скачать
75193
5
20

... можно пренебречь. А основное время процесса будет состоять из времени определения частоты поверхностно-акустической волны, времени подвода газа необходимой концентрации и пр. Таким образом, получаем еще одно подтверждение необходимости дальнейшего повышения автоматизации измерительной установки. Для математического получения градуировочной характеристики ПАВ датчика воспользуемся уравнением [20]: ...

Скачать
163416
8
26

... задаются в поле задания уставок. 6. Безопасность и экологичность проекта В основной части дипломного проекта рассмотрены вопросы, связанные с модернизацией релейной защиты РУ-27,5 кВ тяговой подстанции Заудинск ВСЖД. Наличие на подстанции высоковольтного оборудования и значительных по величине токов определяет выбор темы, и содержание раздела "Безопасность и экологичность проекта", связанных ...

0 комментариев


Наверх