2. Генераторы с трансформаторной связью

Автогенераторы этого типа (LC-генераторы) содержат колебательный контур в цепи нагрузки усилителя или в цепи его обратной связи. Контур выполняет роль фильтра для выделения колебаний в узкой полосе частот.

Рассмотрим работу LC -генератора на полевом транзисторе с контуром в цепи стока и индуктивной обратной связью (рис. 3). На рис. 4 показаны диаграммы возбуждаемых в генераторе колебаний.

Генератор на ПТ

Рис. 3. LC-генератор на полевом транзисторе

Диагр напр на генер с ПТ

Рис. 4. Диаграммы напряжений на генераторе и установка режима по постоянному току


После подключения источника питания в цепи стока появляется ток. Происходит заряд конденсатора С, и в контуре LC возникают колебания. В катушке связи индуцируется переменная ЭДС. Напряжение на стоке имеет фазовый сдвиг 180о относительно напряжения на затворе. Учитывая это, в катушке связи также необходимо осуществить фазовый сдвиг 180о, для чего ее включают встречно по отношению к первичной катушке колебательного контура.

Возникающее на катушке связи напряжение UOC через конденсаторы C1 и C2 подводится к управляющему переходу транзистора и вызывает изменение тока стока.

При достаточно сильной положительной обратной связи амплитуда напряжения на контуре и амплитуда переменного напряжения на затворе возрастают. Амплитуда напряжения UOC между затвором и общим проводом становится больше напряжения смещения и в цепи управляющего p-n-перехода появится прямой ток. Это приводит к дополнительной подзарядке конденсатора C2 и увеличению напряжения смещения рабочей точки покоя «П», которая сдвигается в сторону больших отрицательных напряжений, усредняя колебания на затворе относительно общего провода.

В соответствии с изменением напряжения на затворе происходят изменения тока стока iC. Пределы изменения тока стока, а, следовательно, и амплитуды выходного напряжения оказываются ограниченными.

R1 служит ограничителем прямого тока через управляющий переход, а конденсатор C1 - для соединения отвода катушки связи LOC по переменному току с общим проводом. R2 и C2 образуют цепь смещения точки покоя «П».

На рис. 5 представлены схемы LC-генераторов на биполярных транзисторах с различными вариантами задания положения рабочей точки.

LC-генер на биполярных тр-ах

Рис. 5. LC-генераторы с установкой рабочей точки током базы (а) с помощью ООС по току эмиттера (б)

Очень часто используются автогенераторы, в которых напряжение обратной связи снимается с части витков катушки колебательного контура.

На рис. 6 показана схема генератора, на которой коллектор непосредственно и эмиттер через конденсатор C3 соединяются соответственно с началом и концом катушки контура L, а база через конденсатор С1 - с отводом от витков катушки LOC, являющихся продолжением основной катушки L. В связи с этим схему называют трехточечной с автотрансформаторной обратной связью или индуктивной трехточкой.

Индуктивная трехточка

Рис. 6. LC-генераторы по схеме индуктивной трехточки: а - транзистор включен по схеме с ОЭ; б - транзистор включен по схеме с ОБ.

Напряжение обратной связи может быть подано с конденсатора Cb делителя напряжения из двух последовательно включенных конденсаторов Ca и Cb в цепи контура (рис. 7). Общая емкость конденсаторов контура C = CaCb/(Ca+Cb). Эта схема называется емкостной трехточкой. Конденсатор C2 препятствует прохождению постоянного тока по катушке L.

Емкостная трехточка

Рис. 7. LC-генераторы по схеме емкостной трехточки:

а - транзистор включен по схеме с ОЭ;

б - транзистор включен по схеме с ОБ

 

3. Кварцевые генераторы

Стабильность частоты LC-генераторов во многих случаях недостаточна. Она зависит от температурных коэффициентов индуктивности и емкости.

Существенно лучшая стабильность частоты генератора может быть достигнута при использовании кварцевых резонаторов, в которых энергия электрического поля преобразуется в энергию механических колебаний. Электрически кварцевый резонатор ведет себя как колебательный контур с высокой добротностью (рис. 8.).

Температурный коэффициент изменения его резонансной частоты очень мал. Практически достижимые значения нестабильности частоты кварцевого резонатора Df/f лежат в пределах от 10-6 до 10-10 .

Рис. 8. Кварцевый резонатор

Электрические параметры кварцевого резонатора хорошо описываются его схемой замещения (рис. 9).

Величины L и C определяются механическими свойствами кварцевой пластины. R - небольшое активное сопротивление, характеризующее затухание механических колебаний. С0 - емкость электродов резонатора и подводящих проводов. Типовые значения этих параметров: L = 100 мГн; R = 100 Ом; С = 0.015 пФ; С0 = 5 пФ.

Рис. 9. Эквивалентная схема кварцевого резонатора

Кварцевый резонатор имеет две точки резонанса - точку последовательного резонанса, которая определяется только механическими свойствами кварцевого кристалла, с резонансной частотой:

,.

и точку параллельного резонанса, которая более нестабильна, с частотой:

Часто бывает необходимо изменять частоту кварцевого резонатора в небольших пределах для того, чтобы получить требуемое значение частоты. Для этого последовательно с резонатором включают конденсатор, емкость которого велика по сравнению с собственной емкостью С (рис. 10).

Рис. 10. Подстройка резонансной частоты кварцевого резонатора при последовательном резонансе

Частота последовательного резонанса в этом случае будет определяться как:

Относительное изменение частоты при этом составляет:

Для возникновения колебаний в генераторе с кварцевым резонатором необходимо, чтобы колебательный контур был настроен на частоту кварцевого резонатора или частоту, кратную частоте кварцевого резонатора (рис. 11).

Рис. 11. LC-генератор с кварцевым резонатором

 

4. Генераторы напряжения специальной формы. Генератор треугольного и прямоугольного напряжений

Этот генератор состоит из последовательно включенных триггера Щмитта и интегратора (рис. 12).

Интегратор интегрирует имеющееся на выходе триггера Шмитта постоянное напряжение. Когда выходное напряжение интегратора достигает порога срабатывания триггера Шмитта, напряжение на выходе триггера скачком меняет свой знак. Вследствие этого, напряжение на выходе интегратора начинает изменяться в противоположную сторону, пока не достигнет другого порога срабатывания. Изменяя постоянную интегрирования RC, можно в широком диапазоне перестраивать частоту формируемого напряжения. Амплитуда треугольного напряжения U2(t) зависит только от установки уровней срабатывания триггера Щмитта:

 

U2m = Uвкл = U1mR1/R2,

где U1m - граница насыщения ОУ1. Но, исходя из формулы, описывающей выходное напряжение, на интеграторе U2 при подаче на его вход постоянного напряжения U1 можно записать:

 

U2(t) = -U1Dt/RC,

где Dt - время интегрирования

Ген треуг и прямоуг напр

Рис. 12. Генератор треугольного и прямоугольного напряжений (а)

и диаграммы его напряжений (б)

При Dt = T/4 , где Т - период треугольного напряжения, получим выражение для периода треугольного напряжения:

или

Таким образом, частота формируемого напряжения не зависит от уровня границы насыщения операционного усилителя Umax .


5. Мультивибраторы

Если главной задачей является получение прямоугольного напряжения, а линейность треугольного напряжения не играет особой роли, описанную выше схему можно упростить, оставив только инвертирующий триггер Шмитта, на вход которого подают сигнал с цепи ООС, выполненной в виде ФНЧ (рис. 13).

Ген треуг и прямоуг напр 2

Рис. 13. Аналоговый мультивибратор на ОУ (а) и диаграммы его напряжений (б)

Для периода выходного напряжения имеет место следующее выражение:

T = 2RC∙ln(1 + 2R1/R2) .

При R1 = R2 TRC.


Литература

1.  Ворсин Н.Н., Ляшко М.Н. Основы радиоэлектроники. - Мн.: Вышейшая школа, 2002.

2.  Жеребцов И.П. Основы электроники. Учебное пособие - Л.: Энергоатомиздат, 2003.

3.  Титце У., Шенк К. Полупроводниковая схемотехника: Справочное руководство. Перевод с немецкого. - М.: Мир, 2002.

4.  Бойко В.И. и др. Учебник в 3-х томах:, 2000


Информация о работе «Принципы построения и функционирования различного вида генераторов колебаний»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 11748
Количество таблиц: 0
Количество изображений: 10

Похожие работы

Скачать
35345
1
13

... регулирования с возможно большим коэффициентом передачи  на постоянном токе, так как ошибка в стабилизации соответствующих параметров тем ниже, чем выше этот коэффициент [2]. 2.2. Теоретические основы управляемых автогенераторов   Эквивалентная схема замещения автогенератора (рис. 9) включает колебательный контур, представленный в виде двух противоположных по знаку реактивных сопротивлений ...

Скачать
146279
15
39

... вторичная электронная эмиссия с катода. В связи с этим к материалу катода предъявляется также требование высокой вторичной эмиссии. Основное назначение современных импульсных магнетронных генераторов — передатчики радиолокационных станций и других радиотехнических устройств, в том числе линий импульсной связи, радиоотелеметрических систем, маяков и т. п. Устройство двух типичных импульсных ...

Скачать
110940
19
18

... условия на модуль МПС16 инструкции по эксплуатации или технические описания средств измерений и контроля. Перечень средств измерения и контроля, инструмента, применяемых при проведении настройки субблока модуля управления МПС, приведен в таблице 6. Таблица 6 Наименование Тип или обозначение Количество Технологический модуль МПС16-01 (без ячейки ЯМ101) АГКР.465653.001 1 Источник ...

Скачать
75453
9
4

... нельзя проводить отбор отдельных компонентов ИС по допуска, как это имело место в схемах дискретных электорадиоэлементах в ЭВМ третьего поколения. Разработка генератора на цифровых микросхемах. Для проверки и настройки цифровых интегральных микросхемах транзисторно-транзисторной логики (ТТЛ) требуются генераторы прямоугольных импульсов. Ниже описывается генератор импульсов, выполненный всего на ...

0 комментариев


Наверх