6.1 Определение нагрузок действующих на вал

Нагрузки, действующие со стороны цилиндрических передач (рисунок 4):

Окружная сила

где  – диаметр делительной окружности шестерни.

Радиальная сила

Рисунок 6.1 – Силы в цилиндрических передачах

Первая передача

;

;


Вторая передача

;

;

Третья передача

;

;

6.2 Эпюры изгибающих и крутящих моментов

Рассмотрим вала (рисунок 6.1) в двух плоскостях: горизонтальной и вертикальной, в которых действуют радиальная и окружная силы.

Рисунок 5 – Схема нагружения вала

Составим уравнение равновесия вала в вертикальной плоскости.

Составим уравнение равновесия вала в горизонтальной плоскости.

 

По найденным реакциям строим эпюру изгибающих и крутящих моментов (рисунок 6.2)

Определение полной реакции в опорах:


Рисунок 6.2 – Эпюры изгибающих и крутящих моментов

6.3 Расчет вала на усталостную прочность

Целью расчета является определение запаса усталостной прочности и сравнение его с допускаемым запасом.

Расчет на усталостную прочность проводится по опасному сечению. Опасными сечениями является участок вала: под колесом , под подшипниками и участок вала с уступом.

Определим критерий безопасности по формуле:

где  и – соответственно изгибающий и крутящий моменты в сечении;

– коэффициент, выбирается по таблице 6.1 [8];

– осевой момент сопротивления,


1)         Участок вала под колесом:

;

;

;

;

;

.

2)         Участок вала под подшипником:

;

;

;

;

;

3)         Участок вала с уступом:

;

;

;

;

;

Наиболее опасный участок под подшипником, т.к. . Дальнейший расчет проводим на этом участке.

Амплитудные и постоянные составляющие напряжений изгиба и кручения определяем по формулам:

;

;

где  и  – соответственно изгибающий и крутящий моменты в рассматриваемом сечении вала;

,  – моменты сопротивления сечения изгибу и кручению,

Коэффициенты запаса усталостной прочности по нормальным и касательным напряжениям:


где  и  – пределы выносливости при изгибе и кручении [8, табл. 3.7];

 и – коэффициенты, учитывающие влияние абсолютных размеров вала [8, табл. 6.3], ;

 и– коэффициенты концентрации напряжений при изгибе и кручении с учетом влияния шероховатости поверхности,

 и  – эффективные коэффициенты концентрации напряжений [8, табл. 6.5-6.6], ; ;

 и  – коэффициенты влияния шероховатости поверхности [8, табл. 6.4]

 – коэффициент упрочнения валов [8, табл. 6.9], ;

 и  – коэффициенты, характеризующие чувствительность материала к асимметрии цикла напряжений. [8, табл. 6.8], ; .

Общий запас прочности по пределу выносливости для валов из пластичных материалов определяют по формуле:

где  – допускаемый запас прочности, .


7. ВЫБОР И РАСЧЕТ ШПОНОЧНЫХ СОЕДИНЕНИЙ 7.1 Выбор шпоночных и шлицевых соединений

Первый вал

1)         Шпоночное соединение колеса с валом.

Шпонка  ГОСТ 23360-78

Второй вал

2)         Шпоночное соединение колеса с валом.

Шпонка  ГОСТ 23360-78

Второй вал

3)         Шпоночное соединение, колеса с валом.

Шпонка  ГОСТ 23360-78

Третий вал

1) Шпоночное соединение муфты с валом.

Шпонка  ГОСТ 23360-78

Третий вал

1) Шпоночное соединение муфты с валом.

Шпонка  ГОСТ 23360-78

  7.2 Расчет шпоночного соединения

Выбранная шпонка проверяется на смятие, по формуле:

где – вращательный момент, передаваемый шпонкой;

– диаметр вала;

– высота шпонки;

– рабочая длина шпонки, ;

– количество шпонок;

– допускаемое напряжение смятия, .

Пример: Шпонка  ГОСТ 23360-78


8. ВЫБОР И РАСЧЕТ ПОДШИПНИКОВ 8.1 Выбор подшипников

Подшипники выбираем, пользуясь справочником [9].

Первый вал

Радиальный шариковый подшипник ГОСТ 8338 – 75.

105:

Второй вал

Радиальный шариковый подшипник ГОСТ 27365 – 87.

104:

Третий вал

Радиальный шариковый подшипник ГОСТ 8338 – 75.

110:

Четвертый вал

Радиальный шариковый подшипник ГОСТ 8338 – 75.

106:

Пятый вал

Радиальный шариковый подшипник ГОСТ 8338 – 75.

207:

8.2 Проверочный расчет подшипников расчетного вала

Основным расчетным параметром, который определяет работоспособность подшипниковой опоры, является долговечность подшипника, определяемая по формуле [8]:


где – динамическая грузоподъемность;

– коэффициент формы тела качения, ;

– частота вращения подвижного кольца;

– приведенная нагрузка,

– коэффициент кольца, ;

– коэффициент безопасности, из таблицы 8.1 [8] ;

– коэффициент температурного режима, из таблицы 8.2 [8] ;

, – коэффициент приведения(, );

– радиальная и осевая нагрузка на подшипники:

, – с.м. пункт 6.2;

Для проверки правильности выбора подшипника, необходимо чтобы выполнялось условие


Опора А:

Опора В:

Выбранный подшипник удовлетворяет условию.


9. ВЫБОР И РАСЧЕТ МУФТ

При выборе, муфта должна удовлетворять пяти условиям [3].

1. Номинальный передаваемый момент муфты должен быть больше максимального приведенного к ней статического момента нагрузки :

,

где  – коэффициент запаса, .

2. Вращающий момент муфты  должен быть больше максимального приведенного к муфте момента трогания механизма , т.е. .

3. Муфта должна обеспечивать заданные для механизма длительность разгона , торможения и реверса .

,

,

,

где  – приведенный момент инерции, ;

 – частоты вращения, ;

 – моменты вращения и сопротивления движения, .

4. Остаточный передаваемый момент  должен быть меньше приведенного к валу муфты минимального момента сопротивления механизма  при движении на холостом ходу, т.е. , где .

5. Средняя мощность потерь  должны быть меньше мощности допустимых потерь  для выбираемой муфты.

,

где  – потери на трение;  – потери холостого хода;  – относительная продолжительность включения муфты, %;  – джоулевы потери в обмотке муфты. Потери на трение при разгоне

,

где  – число включений муфты в течение часа.

Потери на трение при торможении

Потери на трение при реверсе

.

Потери холостого хода: , где  – относительная частота вращения дисков при отключенной муфте.


10. Разработка системы управления

Для управления коробкой скоростей станка с ЧПУ применяются контактные электромагнитные муфты ЭМ…2 и бесконтактные электромагнитные муфты ЭМ…4. Применение таких муфт позволяет осуществлять переключение передач во время работы станка, как в холостом режиме работы, так и под нагрузкой [3]. Для питания электромагнитных муфт обычно применяются селеновые выпрямители. На рисунке 8 показана система питания группы электромагнитных муфт. Муфты включают и отключают по посредством управляющих контактов УК1, УК2 и т. д. При отключении муфты исчезающее магнитное поле наводит в её катушке э. д. с. Большой величины. Она может вызвать пробой изоляции катушки. Чтобы понизить э. д. с. нужно замедлить уменьшение магнитного поля. Это достигается применением резисторов R1, R2. Э. д. с. самоиндукции направлена в сторону убывающего тока; под ее действием по замкнутому через резистор контуру будет некоторое время протекать затухающий ток, который замедлит изменение магнитного потока и уменьшит величину э. д. с. Часто применяют вентили В1, В2. Они не пропускают тока через разрядные резисторы R1, R2, когда муфты включены, и в это время не будет потерь энергии в резисторах.

Рисунок 8 – Схема питания электромагнитных муфт


11. ОПРЕДЕЛЕНИЕ СИСТЕМЫ СМАЗКИ

Смазочная система станка служит для подачи смазочного материала ко всем трущимся поверхностям.

Существует несколько схем подвода смазочного материала к трущимся поверхностям.

Индивидуальная схема служит для подвода смазочного материала к одной смазочной точке, централизованная к нескольким точкам. В нераздельной схеме нагнетательное устройство присоединено к смазочной точке постоянно, в раздельной оно подключается только на время подачи смазочного материала. В проточной системе жидкий или пластичный материал используется один раз. В циркуляционной системе жидкий материал подается повторно. В системах дроссельного дозирования объем смазочного материала, подаваемого к смазочной точке, регулируется дросселем. В системах объемного дозирования могут регулироваться не только доза, но и частота подачи. В комбинированных системах могут быть предусмотрены объемное и дроссельное регулирование. Системы с жидким смазочным материалом в зависимости от способа его подачи к поверхностям трения могут быть разбрызгивающими, струйными, капельными, аэрозольными [3].

Для смазки данного станка принимаем комбинированную смазочную систему, которая состоит, из централизованной импульсной системы. Смазочный материал подается к каналам расположенных в нутрии валов под давлением, при этом происходит смазывание подшипников и охлаждение электромагнитных муфт. Смазка зубчатых передач осуществляется аэрозольным методом. Схема импульсной системы приведена на рисунке 9 состоящая из: 1 – указатель уровня смазочного материала; 2 – приемный фильтр; 3 – насос; 4 – фильтр напорной магистрали; 5 – манометр; 6 – смазочный дроссельный блок с ротаметрическими указателями; 7 – реле расхода смазочного материала; 8 – точки смазывания; 9 – указатель потока; 10 – точки смазывания с форсункой; 11 – точки смазывания; 12 – смазочный дроссельный блок; 13 – сливной магнитосетчатый фильтр; 14 – предохранительный клапан;15 – реле уровня; 16 – фильтр; 17 – резервуар.

Рисунок 9 – Схема импульсной централизованной смазочной системы

 
ЗАКЛЮЧЕНИЕ

В результате проделанной работы был произведен расчет коробки скоростей токарно-револьверного станка, выбор и расчет параметров отдельных ее элементов: электромагнитных муфт, обеспечивающих автоматическое переключение передач коробки; подшипников качения, служащих опорами валов и зубчатых колес; системы смазки и смазочного материала, обеспечивающих непрерывный подвод смазочного материала ко всем механизмам станка. Были разработаны компоновочная схема и чертеж коробки скоростей с указанием его основных элементов.

Выполнен чертеж общего вида токарно-револьверного станка модели 1Н318, где указаны его основные элементы, а также схематически показаны структурная сетка, график частот вращения и кинематическая схема проектируемой коробки скоростей.


ПЕРЕЧЕНЬ ССЫЛОК

 

1.         Справочник технолога машиностроителя. В 2-х т. Т.2/ Под ред. А.Г. Косиловой и Р.К. Мещерякова. – 4-е изд., перераб. и доп. – М.: Машиностроение, 1985. – 496 с.

2.         Методические указания к курсовому проекту по курсу "Металлорежущие станки и промышленные роботы" (для студентов специальности 0501) / Сост.: Ю.А. Сапронов, В.Г. Кочергин, Н.В. Вяльцев, А.Е. Горша. – Донецк: ДПИ, 1987. – 48 с.

3.         Кочергин А.И. Конструирование и расчет металлорежущих станков и станочных комплексов. Курсовое проектирование: Учеб. пособие для вузов. – Мин.: Выш. шк., 1991. – 382 с.

4.         Методичні вказівки до виконання курсового проекту з деталей машин. "Вибір електродвигуна та визначення вихідних даних для розрахунку приводу" (для студентів напрямку "Інженерна механіка"). / Автори: Оніщенко В.П., Ісадченко В.С., Недосекін В.Б., – Донецьк: ДонНТУ, 2005. – 36 с.

5.         Методичні вказівки до виконання курсового проекту з деталей машин. Розділ 2 "Проектування зубчастих черв'ячних передач" (для студентів напрямку "Інженерна механіка"). / Автори: В.П. Блескун, С.Л. Сулійманов.– Донецьк.: ДонНТУ, 2005. – 48 с.

6.         Решетов Д.Н. Детали машин: Учебник для студентов машиностроительных и механических специальностей вузов. – 4-е изд., перераб. и доп. – М.: Машиностроение, 1989. – 496 с.

7.         Проектирование механических передач: Учебно-справочное пособие для вузов /С.А. Чернавский, Г.А. Снесарев, Б.С. Козинцов и др. – 5-е изд., перераб. и доп. – М.: Машиностроение, 1984. – 560 с.

8.         Методичні вказівки до виконання курсового проекту з деталей машин. Розділ 3. Проектування валів та їх опор на подшипниках кочення (для студентів напрямку "Інженерна механіка)/ Автори: О.В. Деркач, О.В. Лукічов, В.Б. Недосєкин, Проскуряков С.В. – Донецьк: ДонНТУ, 2005. - 106 с.

9.         Подшипники качения: Справочник/ Под. ред. В.Н. Нарышкина и Р.В. Коросташевского. - М.: Машиностроение, 1984 - 280с.

10.       Методичні вказівки до виконання курсового проекту з деталей машин. Конструювання муфт і корпусів (для студентів напрямку "Інженерна механіка") / Сост. : В.С. Ісадченко, П.М. Матеко, В.О. Голдоб.н. – Донецьк: ДонНТУ, 2005. – 40 с.


Информация о работе «Расчет коробки скоростей металлорежущих станков»
Раздел: Промышленность, производство
Количество знаков с пробелами: 24783
Количество таблиц: 4
Количество изображений: 9

Похожие работы

Скачать
22366
4
11

... СМАЗКИ 7.         ВЫБОР СИСТЕМЫ УПРАВЛЕНИЯ ЗАКЛЮЧЕНИЕ ПЕРЕЧЕНЬ ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ ВВЕДЕНИЕ Приводы металлорежущих станков выполняют широкий спектр движений: рабочих, вспомогательных, установочных и т.д. При этом перемещается инструмент или заготовка. Кинематические и силовые характеристики коробки скоростей должны обеспечить требуемые значения величины скоростей при обработке на ...

Скачать
9338
1
8

... . Так как собачки смещены относительно друг друга на 12,5 зуба храпового колеса, то они могут производить минимальный поворот храпового колеса на ползуба. станок автоматический коробка скорость 3. Построение автоматической коробки скоростей   Составление основной структурной формулы автоматической коробки скоростей при z=18: Z=18=3[1]3[3]2[9]; Z=18=3[3]2[9]3[1]; Z=18=2[9]3[3]3[1]; ...

Скачать
19886
20
9

... постоянства суммы SZ соблюдается. 030501.080602.041.000 ПЗ Лист Изм Лист № документа Подпись Дата    11. Расчет энергосиловых параметров коробки скоростей и выбор электродвигателя Выбор электродвигателя. Принимаем электродвигатель по ближайшей частоте вращения. n = 750 обмин Определим ...

Скачать
40728
2
7

... основных узлов и агрегатов, выявление наиболее оптимальных технических решений и внедрение их в производство. Целью данного курсового проекта является разработка автоматической коробки подач горизонтально – фрезерного станка, переключение передач в которой осуществляется при помощи электромагнитных муфт. 1. Общая характеристика и назначение металлорежущих станков, для которых проектируется ...

0 комментариев


Наверх