1.3 Розробка машинного алгоритму

1.3.1 Побудова граф-схеми алгоритму Побудова словесного алгоритму:

1) У регістр А записується прямий код множеного А, який передається із вхідної шини:

РгА:=Швх1

2) У регістр В записується прямий код множника В, який передається із вхідної шини:

РгВ:=Швх2

3) Встановлюємо в нуль накопичувальний суматор:

НСМ:=0

4) У лічильник записуємо кількість разів повторення циклу:

ЛІЧ:=29

5) Перевіряємо чи рівні знакові розряди співмножників:

РгА[31]=РгВ[31] ?

Якщо так,то переходимо до пункту 7.

Якщо ні, то переходимо до пункту 6.

6) Знаковий розряд НСМ виставляється в 1:

НСМ[63]:=1

7) Аналізуємо старший розряд регістра В:

РгВ[30]=1?

Якщо так, тоді переходимо до пункту 8.

Якщо ні, тоді переходимо до пункту 9.

8) Додаємо до вмісту накопичувального суматора значення коду регістра А:

НСМ:=НСМ+РгА

9) Відновлюємо попередній вміст регістра В, циклічно зсуваючи його вліво на один розряд:

L1.РгB[0:30]

10) Вміст накопичувального суматора циклічно зсуваємо на один розряд вліво:

L1.НСМ[0:62]

11) Декрементуємо значення лічильника:

ЛІЧ:=ЛІЧ-1

12) Молодший розряд накопичувального суматора приймає значення нуль:

НСМ[0]=0

13) Перевіряємо, чи лічильник рівний нулеві:

ЛІЧ=0?

Якщо так, то переходимо до пункту 14

Якщо ні, то переходимо до пункту 7.

14) Значення накопичувального суматора циклічно зсуваємо на один розряд вправо:

R1.НСМ[0:62]

15) Закінчення операції множення. Значення результату, яке записане у накопичувальному суматорі, передається на шину даних:

Швих:=НСМ[0:63]

Для наочного зображення алгоритму виконання операцій використовують граф-схеми алгоритмів.

Граф-схема алгоритма (ГСА) - орієнтований зв'язаний граф, який містить одну початкову вершину (Початок), одну кінцеву вершину (Кінець) і довільну кількість умовних і операторних вершин. Вершина "Початок" входів не має.

Кінцева, операторна і умовна вершини мають по одному входу, початкова вершина входів не має. Вершина "Початок" і будь-яка операторна мають по одному виходу, умовна вершина має два виходи, позначених символами «1» та «0». Вершина "Кінець" виходів не має.

ГСА має задовольняти наступні умови:

входи і виходи вершин з'єднуються один з одним за допомогою дуг, направлених завжди від виходу до входу;

кожен вихід з'єднано лише з одним входом;

кожен вихід з'єднується лише з одним входом;

будь-який вхід з'єднується принаймні з одним виходом;

будь-яка вершина ГСА лежить принаймні на одному шляху від початкової вершини до кінцевої;

один із виходів умовної вершини може з'єднуватись з її входом, що є недопустимим для операторної вершини. Такі умовні вершини іноді називаються зворотними;

в кожній умовній вершині записується логічна умова із множини логічних умов;

в кожній операторній вершині записується оператор, який являє собою вихідний сигнал або сукупність вихідних сигналів управляючого автомата.

При проектуванні різноманітних пристроїв ЕОМ зазвичай використовуються змістовні граф-схеми алгоритмів, які описують не лише формальні елементи, а також логічні умови і мікрооперації у змістовних термінах.

Структурна схема операційного автомата – на рисунку 1.

Рисунок 1 - Структурна схема операційного автомата


1.3.2 Приклад реалізації алгоритму

Приклад: Перемножити на суматорі прямого коду починаючи з старших розрядів множника А=57, В=-923 з використанням описаного у пункті 1.3.1 алгоритму.

Розв’язання.

Спочатку запишемо машинні зображення чисел А та В в прямих кодах з заданою розрядністю:

А = 0,[0] 30...[0] 6111001; В = 1,[0] 30…[0] 111110011011

Послідовність дій, що виконуються над числами, наведена у таблиці 1.

Відповідь: 1,[0] 62…[0] 1701100110011011000.

Таблиця 1 – Приклад реалізації алгоритму множення, починаючи зі старших розрядів множника

Суматор НСМ Регістр РгА Регістр РгВ Примітки

0,[0]62…[0]1700000000000000000

0,[0]30...[0]6111001

1,[0]30…[0]111110011011

НСМ:=0; РгА:=Швх1; РгВ:=Швх2; ЛІЧ:=29;

1,[0]62…[0]18000000000000000000

0,[0]30...[0]6111001

1,[0]30…[0]121110011011_

НСМ[63]:=1; РгВ[30]=0; L1.РгВ[0:30]; ЛІЧ:=28;

L1.НСМ[0:62]; НСМ[0]:=0;

1,[0]62…[0]1700000000000000000

0,[0]30...[0]6111001

1,01110011011[ _ ] 19…[ _ ] 0

РгВ[30]=0; L1.РгВ[0:30];

L1.НСМ[0:62];

НСМ[0]:=0; ЛІЧ:=10;

1,[0]62…[0]1700000000000000000

1,[0]62…[0]1700000000000111001

1,[0]62…[0]1700000000001110010

0,[0]30...[0]6111001

1,1110011011[_] 20…[_] 0

РгВ[30]=1;

НСМ:=НСМ+РгА;

L1.РгВ[0:30];

L1.НСМ[0:62];

НСМ[0]:=0; ЛІЧ:=9;

1,[0]62…[0]1700000000001110010

1,[0]62…[0]1700000000010101011

1,[0]62…[0]1700000000101010110

0,[0]30...[0]6111001

1,110011011[_] 21…[_] 0

РгВ[30]=1;

НСМ:=НСМ+РгА;

L1.РгВ[0:30];

L1.НСМ[0:62];

НСМ[0]:=0; ЛІЧ:=8;

1,[0]62…[0]1700000000101010110

1,[0]62…[0]1700000000110001111

1,[0]62…[0]1700000001100011110

0,[0]30...[0]6111001

1,10011011[_] 22…[_] 0

РгВ[30]=1;

НСМ:=НСМ+РгА;

L1.РгВ[0:30];

L1.НСМ[0:62];

НСМ[0]:=0; ЛІЧ:=7;

1,[0]62…[0]1700000001100011110

1,[0]62…[0]1700000011000111100

0,[0]30...[0]6111001

1,0011011[_] 23…[_] 0

РгВ[30]=0; L1.РгВ[0:30];

L1.НСМ[0:62];

НСМ[0]:=0; ЛІЧ:=6;

1,[0]62…[0]1700000011000111100

1,[0]62…[0]1700000110001111000

0,[0]30...[0]6111001

1,011011[_] 24…[_] 0

РгВ[30]=0; L1.РгВ[0:30];

L1.НСМ[0:62];

НСМ[0]:=0; ЛІЧ:=5;

1,[0]62…[0]1700000110001111000

1,[0]62…[0]1700000110010110001

1,[0]62…[0]1700001100101100010

0,[0]30...[0]6111001

1,11011[_] 25…[_] 0

РгВ[30]=1;

НСМ:=НСМ+РгА;

L1.РгВ[0:30]; ЛІЧ:=4;

L1.НСМ[0:62]; НСМ[0]:=0;

1,[0]62…[0]1700001100101100010

1,[0]62…[0]1700001100110011011

1,[0]62…[0]1700011001100110110

0,[0]30...[0]6111001

1,1011[_] 26…[_] 0

РгВ[30]=1;

НСМ:=НСМ+РгА;

L1.РгВ[0:30]; ЛІЧ:=3; L1.НСМ[0:62]; НСМ[0]:=0;

1,[0]62…[0]1700011001100110110

1,[0]62…[0]1700110011001101100

0,[0]30...[0]6111001

1,011[_] 27…[_] 0

РгВ[30]=0; L1.РгВ[0:30];

L1.НСМ[0:62];

НСМ[0]:=0; ЛІЧ:=2;

1,[0]62…[0]1700110011001101100

1,[0]62…[0]1700110011010100101

1,[0]62…[0]1701100110011011000

0,[0]30...[0]6111001

1,11[_] 28…[_] 0

РгВ[30]=1;

НСМ:=НСМ+РгА;

L1.РгВ[0:30]; ЛІЧ:=1;

L1.НСМ[0:62]; НСМ[0]:=0;

1,[0]62…[0]1701100110011011000

1,[0]62…[0]1701100110110000011

1,[0]62…[0]1711001100110110000

0,[0]30...[0]6111001

1,1[_] 29…[_] 0

РгВ[30]=1;

НСМ:=НСМ+РгА;

L1.РгВ[0:30]; ЛІЧ:=0;

L1.НСМ[0:62]; НСМ[0]:=0;

1,[0]62…[0]1711001100110110000

1,[0]62…[0]1701100110011011000

0,[0]30...[0]6111001

1,1[_] 29…[_] 0

R1.НСМ[0:62];

Швих:=НСМ[0:63]


2. СИНТЕЗ КЕРУЮЧОГО АВТОМАТУ

 

2.1 Основи теорії керуючих автоматів

Керуючий автомат (КА) генерує послідовність керуючих сигналів, яка передбачена мікропрограмою і відповідає значенням логічних умов. Інакше кажучи, керуючий автомат задає порядок виконання дій в операційному автоматі, який виходить з алгоритму виконання операцій. Найменування операції, яку необхідно виконувати у пристрої, визначається кодом операції. По відношенню до керуючого автомату сигнали коду операції, за допомогою яких кодується найменування операції, і повідомлювальні сигнали х1,...,хi, які формуються в операційному автоматі, грають однакову роль: вони впливають на порядок генерування керуючих сигналів y. Тому сигнали коду операції і умовні сигнали відносяться до одного класу – до класу повідомлювальних сигналів, які поступають на вхід керуючого автомату.

В основі опису керуючих автоматів лежить принцип мікропрограмного керування. Він полягає в тому що будь-яка операція розглядається як складна що містить більш прості операції які називаються мікроопераціями тобто кожна операція – це визначена послідовність мікрооперацій.

Існують два основні типи керуючих автоматів

1. Керуючий автомат з жорсткою чи схемною логікою. Для кожної операції будується набір комбінаційних схем які в потрібних тактах збуджують відповідні керуючі сигнали. Іншими словами будується скінчений автомат в якому необхідна множина станів представляється станами k запам’ятовуючих елементів

q = {q1 q2, …, qk}

2. Керуючий автомат з збереженою в пам’яті логікою (програмованою логікою). Кожній операції що виконується в операційному пристрої ставиться у відповідність сукупність збережених в пам’яті слів-мікрокоманд кожна з яких містить інформацію про мікрооперації що підлягають виконанню на протязі одного машинного такту та вказівку (яка в загальному випадку залежить від значень вхідних сигналів) яке повинно бути вибране з пам’яті наступне слово (наступна мікрокоманда). Таким чином в цьому випадку функції переходів та виходів А та В керуючого автомату реалізуються збереженою в пам’яті сукупністю мікрокоманд.

Послідовність мікрокоманд що виконують одну машинну команду чи окрему процедуру створює мікропрограму. Звичайно мікропрограми зберігаються в спеціальній пам’яті мікропрограм (керуючій пам’яті).

В керуючих автоматах з збереженоюю в пам’яті програмою мікропрограми використовуються в явній формі вони програмуються в кодах мікрокоманд і в такому вигляді заносяться в пам’ять. Тому такий метод управління цифровим пристроєм називається мікропрограмуванням а керуючі блоки що використовують цей метод - мікропрограмними керуючими пристроями.

В залежності від прийнятого способу кодування мікрооперацій розрізняють три варіанти організації мікропрограмного керування горизонтальне вертикальне та комбіноване мікропрограмування. При горизонтальному мікропрограмуванні для кожної мікрооперації виділяється один розряд у мікрокоманді. При такому кодуванні всі операції що виконуються одночасно визначаються одиницями у відповідних розрядах однієї мікрокоманди. Код операції задає адресу першої мікрокоманди в мікропрограмі. Адреси наступних мікрокоманд визначаються за принципом примусової адресації згідно цього мікрокоманда складається з двох частин-мікроопераційної та адресної. Основною перевагою горизонтального мікропрограмування є висока швидкодія як за рахунок простоти та можливості одночасної генерації довільного числа сигналів мікрооперацій так і за рахунок швидкого формування адреси наступної мікрокоманди. Однак при горизонтальному мікропрограмуванні довжина поля мікрооперації повинна бути не менша за максимальну кількість несумісних мікрооперацій тобто вимагаються довгі формати мікрокоманд та комірки запам’ятовуючого пристрою що призводить до значних витрат обладнання. Крім того лише невелике число розрядів в полі мікрооперації буде містити одиниці тобто запам’ятовуючий пристрій буде використовуватись неефективно.

Скоротити довжину мікрокоманд дозволяє застосування вертикального мікропрограмування при якому кожна мікрооперація кодується ]log2 n[ - розрядним кодом де n – загальна кількість мікрооперацій. Таке кодування накладає обмеження на методи виконання операцій а саме не повинно бути операцій що потребують одночасного виконання ряда мікрооперацій. В тих випадках коли це обмеження виконати неможливо треба використовувати складні мікрооперації що складаються з сукупності простих.

2.2 Опис керуючого автомату Мілі

За способом формування функції виходів виділяють три типи абстрактних автоматів: автомат Мілі, автомат Мура та С-автомат.

В абстрактному автоматі Мілі значення функції виходу в момент t залежить не лише від стану автомата, але і від набору значень вхідних сигналів.

Довільний абстрактний автомат Мілі має один вхідний і один вихідний канали.

Автомат Мілі характеризується системою рівнянь:

(2.1)

де  – множина вхідних сигналів автомата (вхідний алфавіт);

– множина станів автомата (алфавіт станів);

– множина вихідних сигналів (вихідний алфавіт).

λ – функція виходів автомата;

φ – функція переходів автомата.

Іншими словами, функція виходів λ задає відображення (XS)→Y, тобто ставить у відповідність будь-якій парі елементів декартового добутку множин (XS) елемент множини S.

2.3 Кодування граф-схеми автомату

В автоматі Мілі початок і кінець мікропрограми представляються початковим станом автомата а0. Кожна дуга, яка виходить із операторної вершини позначається символом аі. Якщо декілька дуг, позначені певними станами ак, входять до одного блоку графа мікропрограми, то всі вони помічаються однаковим символом стану ак.

Позначення операцій та логічних умов наведено у таблиці 3.

  2.4 Побудова таблиці переходів

Умови переходу по мікропрограмі від одного стану до іншого задають функцію переходів автомата.

Таблиця переходів (виходів) являє собою таблицю з подвійним входом, рядки якого пронумеровані вхідними буквами, а стовпці – станами. На перетині вказується стан, у який переходить автомат (в таблиці переходів) або вихідний сигнал, що видається ним (у таблиці виходів).

Іноді при завданні автоматів Мілі використовують одну суміщену таблицю переходів і виходів, в якій на перетині стовпця аm і рядка хj записуються у вигляді аs/yg наступний стан і вихідний сигнал, що видається.

У таблиці 4 для заданого автомата маємо суміщену таблицю переходів і виходів.


Таблиця 2 – Таблиця переходів і виходів

t t+1 Тригери
JK2 JK1 JK0

ai

код ai

xi

ai+1

код ai+1

yi

J2 K2 J1 K1 J0 K0

a0

000

a1

001 y1,y2,y3,y4 0 0 0 0 1 0

a2

010 0 0 1 0 0 0

a3

011 0 0 1 0 1 0

a1

001

a2

010 y5 0 0 1 0 0 1

a3

011 0 0 1 0 0 0

a2

010 ___

a3

011 y6 0 0 0 0 1 0

a3

011 ___

a4

100 y7,y8 1 0 0 1 0 1

a4

100

a5

101 y9,y10 0 0 0 0 1 0

a2

010 0 1 1 0 0 0

a3

011 0 1 1 0 1 0

a5

101 ____

a6

110 y11 0 0 1 0 0 1

a6

110 ____

a0

000 y12 0 1 0 1 0 0
  2.5 Синтез керуючого автомату

Керуючі пристрої складаються із окремих логічних схем елементів, які виробляють керуючі сигнали в заданій послідовності. Такий керуючий пристрій можна розглядати як керуючий автомат типу Мура чи Мілі.

Для автомату Мілі вихідний сигнал залежить не лише від внутрішнього стану, а й від зовнішнього стану схеми. Можна побудувати граф переходів автомата Мура, де вершинами являються стани автомата, а дугами - умови переходу з одного стану в інший.

В залежності від способу визначення вихідного сигналу в синхронних автоматах існує два способи:

вихідний сигнал y(t) однозначно визначається вхідним сигналом x(t) і станом а(t-1) автомата в слідуючий момент часу;

вихідний сигнал y(t) однозначно визначається вхідним сигналом x(t) і станом а в даний момент часу.

Автомати можна задати також у вигляді графів, таблиць виходів та переходів, суміщеної таблиці переходів і виходів. Управляючий пристрій складається із окремих логічних схем, що виробляють управляючі сигнали в заданій послідовності. Такий управляючий пристрій можна розглядати як керуючий автомат типу Мура чи Мілі.

Після побудови автомата Мілі функціонування керуючого автомата представляють у вигляді таблиць переходів і виходів. Для цього спочатку виробляють кодування станів автомата двійковими кодами, визначають тип та кількість тригерів. Потім по таблиці переходів встановлюють значення сигналів на входах тригерів, при яких відбуваються переходи; визначають функції збудження тригерів і виконують їх мінімізацію (спрощення). По знайдених виразах будується схема управляючого автомата на вибраних елементах.

В нашому випадку буде використовуватись три логічні умови Х = {х1,x2,х3} і дванадцять мікрооперацій Y = {y1, …, y10}

Отже, для кодування станів автомата необхідно 3 JK-тригера: JK0, JK1, JK2,. Закодуємо стани автомата так, як це показано у таблиці 5.

Для побудови функцій збудження тригерів і виходів використовується структурна таблиця автомата (таблиця 5).

На основі таблиці 5 будується канонічна система функцій виходів і функції збудження тригерів.

Функції виходів:

;

;

;

;

;

;

;

;

;

;

.

Функції збудження тригерів:

;

;

;

.


3. МЕТОДИКА КОНТРОЛЮ 3.1 Теоретичні відомості

Різноманітні задачі можна вирішувати за допомогою методу контролю, який оснований на властивостях порівнянь. Розвинуті на цій основі методи контролю арифметичних і логічних операцій називають контролем по модулю.

Арифметичні операції виконуються на суматорах прямого, оберненого і доповняльного коду. Допустимо, що зображення чисел зберігаються в машині деякого коду, тобто операція перетворення в заданий код на виході чи вході машини. Методика реалізації операцій контролю представляється наступним чином.

По-перше розглянемо зображення числа в відповідному коді, як єдину кодову комбінацію.

Розглянемо послідовність дій на прикладі суматора прямого коду додаються тільки цифрові частини зображення чисел, а знак зберігається, то контроль можна здійснити двома способами:

1)   роздільний контроль знакової і цифрової чистин зображень результату;

2)   загальний контроль всього зображення.

При роздільному способі для контролю знакових розрядів можна використовувати засіб для визначення переповнення, так як у випадку модифікованого коду поява помилок в знакових розрядах приведе до неспівпаданню інформації в них. При перевірці правильності обробки цифрових частин зображень також не виникає особах ускладнень.

При загальному способі контролю потребує корекцію контрольного коду результату із-за того, що знак результату при додаванні повторює знак доданків.

Контроль по модулю дозволяє ефективно визначити одиничні помилки. Однак одинична помилка в одному розряді може привести до ряду помилок, в декількох розрядах. Тому краще знайти засоби, які дозволять знайти не тільки одиничні помилки, але ряд їх пакетів, які можуть зустрічатись. Для цього використовуються арифметичні коди.

Одним з таких кодів є AN-код, де А-контролюєме число, N-модуль. Для таких кодів змінюються поняття відстані і ваги.

Вагою арифметичного коду прийнято вважати кількість нульових символів в кодовій комбінації, а відстань визначається як вага різниці кодових комбінацій, називають арифметичною відстанню.

А = 2і – 1 , і=2,3,…

АN1  АN2 = A(N1  N2)

Якщо ділення виконується без остачі, помилок немає, якщо з остачею – помилки є.

АN1 АN2 = A2N1 N2

АN – використовуються для контролю лише в тих пристроях, де реалізується операція ділення.

3.2 Приклад контролю виконання операції множення за допомогою 11N-коду

Виконаємо числовий контроль за допомогою 11N-коду для заданих чисел:

N1 = 57

N2 = -923

A=11

11*57*(-923)*11 = 121*(-52 611) = -6 365 931

Тепер отримане число ділимо на 121:

-6 365 931/121 = -52611

Отримаємо -52611 – це означає що націло ділиться отже не існує помилки. Остача в цьому прикладі дорівнює нулю.

Внесемо похибку в обчислення:

-6 365 933/121 = -52611 і остачу 2, отже результат не збігається.


ВИСНОВКИ

 

В ході виконання курсової роботи проведено аналіз проблеми логiчної реалізації операції множення чисел у формі з фіксованою комою, зокрема, алгоритму множення на суматорі прямого коду, починаючи зі старших розрядів множника. Вищевказана операція перевірена на прикладі чисел А= 57 та В= - 923, а також для заданої операції побудовано алгоритм виконання множення чисел у формі з фіксованою комою. Потім за даним алгоритмом розроблено операційний та керуючий автомати. А також описана методика 11N контролю даної операції.


ПЕРЕЛІК ПОСИЛАНЬ

 

1.   Методичні вказівки до оформлення курсових проектів (робіт) у Вінницькому національному технічному університеті / Г.Л. Лисенко, А.Г. Буда, Р.Р. Обертюх. – Вінниця: ВНТУ, 2006. – 60 с.

2.   Прикладная теория цифровых автоматов: Учеб. для вузов по спец. ЭВМ / А.Я. Савельев. – М.: Высшая школа, 1987. – 272 с.

3.   Прикладная теория цифровых автоматов / К.Г. Самофалов, А.М. Романкевич, В.Н. Валуйский, Ю.С Каневский, М.М. Пиневич. – К.: Вища школа. Головное изд-во, 1987. – 375 с.

4.   Структура электронных вычислительных машин / С.А. Майоров, Г.И. Новиков. – Л.: Машиностроение. Ленинградское отделение, 1979. – 384 с.

5.   Электронные вычислительные машины и системы: Учеб. пособие для вузов. – 3-е изд., перераб. и доп. / Б.М. Каган. – М.: Энергоатомиздат, 1991. – 592 с.

6.   Цифровые ЭВМ: Теория и проектирование / К.Г. Самофалов, В.И. Корнейчук, В.П. Тарасенко. – К.: Выща школа. Головное изд-во, 1989. – 424 с.

7.   Справочник по цифровой схемотехнике / В.И. Зубчук, В.П. Сигорский, А.Н. Шкуро. – К.: Тэхника, 1990. – 448 с.


Информация о работе «Розробка алгоритму операційного автомату, синтез керуючого автомату з жорсткою логікою типу Мілі»
Раздел: Информатика, программирование
Количество знаков с пробелами: 35478
Количество таблиц: 2
Количество изображений: 1

Похожие работы

Скачать
26838
19
22

... y35 RS1:=Z1 y11 36 RS1 := RS2 + RS1 RS1 y26 RS2 y30 RS1+RS2 y40 RS1:=Z2 y10 Рис. 1.7 – Структурна граф-схема операційного автомата 2. СИНТЕЗ КЕРУЮЧИХ АВТОМАТІВ З ЖОРСТКОЮ ЛОГІКОЮ На практиці використовуються дві моделі МПА - автомат Милі й автомат Мура, розходження між якими полягає у функції ...

Скачать
367716
10
48

... В АБС АКБ «ПРОМІНВЕСТБАНК» ТА ОЦІНКА РІВНЯ ВРАЗЛИВОСТІ БАНКІВСЬКОЇ ІНФОРМАЦІЇ 3.1 Постановка алгоритму задачі формування та опис елементів матриці контролю комплексної системи захисту інформації (КСЗІ) інформаційних об’єктів комерційного банку В дипломному дослідженні матриця контролю стану побудови та експлуатації комплексної системи захисту інформації в комерційному банку представлена у вигляді ...

Скачать
120215
18
54

... ім часом компанії-виробники PLD звернули увагу на розробку саме таких програмних пакетів. 2. Призначення та структура системи автоматизованого проектування MAX+PLUS II Система автоматизованого проектування MAX+PLUS II являє собою інтегроване середовище для розробки цифрових пристроїв на базі програмувальних логічних інтегральних схем фірми Altera. Він забезпечує виконання всіх етапів, необхі ...

Скачать
24695
0
0

... . Зв’язок контекстно-вільної граматики із автоматом з магазинною пам’яттю. 4. Вхідні і вихідні мови САПР   Вимоги до вхідних і вихідних мов САПР. Їх особливості. Ознайомлення із системою автоматизованого проектування на прикладі САПР. IV. Методи синтезу та оптимізації 1. Основні поняття, визначення, постановка та розв’язок найпростіших оптимізаційних задач   Основні відомості про об'єкт ...

0 комментариев


Наверх