Постановка проблеми

Моделювання процесу обробки сигналів датчика у вихровому потоковимірювачі
Постановка проблеми Вихороутворення при обтіканні нерухомих тіл Приймачі-перетворювачі вихрових коливань Обчислювальні експерименти з різними моделями завад та фільтрів Обчислювальні експерименти без урахування квадратичної залежності амплітуди від частоти Обчислювальні експерименти з урахування квадратичної залежності амплітуди від частоти Визначення кількості перетинів корисного сигналу з нульовим рівнем за допомогою методики для квантованого у часі сигналУ НК – алгоритм. Параметричний фільтр АR(1) Параметричний фільтр МА(1) Корисний сигнал з двома і більше гармоніками Комбінування алгоритму НК з попередньою фільтрацією фільтром низьких частот ОХОРОНА ПРАЦІ І НАВКОЛИШНЬОГО СЕРЕДОВИЩА Освітлення Випромінювання від екрана Експлуатаційні заходи електробезпеки ТЕХНІКО-ЕКОНОМІЧНЕ ОБГРУНТУВАННЯ НАУКОВО-ДОСЛІДНОЇ РОБОТИ Технічна підготовка НДР Розрахунок собівартості Відрахування на соціальні заходи
123841
знак
18
таблиц
78
изображений

1 Постановка проблеми

 

В процесі вимірювання параметрів потоків рідини та газів, що рухаються, з використанням тіла обтікання постає проблема при використанні п’єзоелектричних та тензодатчиків. Вона виникає при вимірюваннях на нижніх частотах, коли амплітуда корисного сигналу, що надходить від датчика, зменшується пропорційно зменшенню інтенсивності потоку газу чи рідини. При зменшенні швидкості потоку в сигналі від датчика буде зменшуватися кількість імпульсів але тільки до критичної межі, а потім, при зменшенні інтенсивності потоку газу чи рідини, різко почне підвищуватися частота імпульсів і лічильник швидкості потоку буде показувати неіснуюче підвищення швидкості потоку. Це обумовлено тим, що амплітуда корисного сигналу зменшується нижче рівня шумів і після формування імпульсів лічильник починає рахувати сигнали від різних перешкод, пов’язаних з роботою насосів та вентиляторів, процесів вихороутворення в місцях опору (вентилі, клапани, коліна, звуження та ін.), вібраційними та акустичними коливаннями, що розходяться по трубопроводу та корпусу пристрою.

Приводом для цієї розробки стала проблема, описана вище, що постала при проведенні експериментів на кафедрі турбінобудування НТУ “ХПІ”. На цій кафедрі зібрали установку для підрахунку швидкості потоку за допомогою вихрового потоковимірювача. Дані отримані при проведені експериментів наведені на рисунку 1.1.

Для визначення частоти синусоїдального сигналу можна скористатися способом наведеним нижче. Частота синусоїдального сигнал викривленого перешкодою буде невизначеною через статичні флуктуації випадкової перешкоди (рисунок 1.2).



Рисунок 1.1 – Залежність частоти імпульсів від швидкості потоку

Особлива легко можна визначити частоту суміші шляхом обчислення статистичного математичного очікування кількості нулів за одиницю часу. Для чистої синусоїди частота  гц кількість нулів за секунду дорівнює  (рисунок 1.3). Перешкода викликає відхилення математичного відхилення цієї кількості.

Рисунок 1.2 – Суміш синусоїдального сигналу та перешкоди.


Рисунок 1.3 – Синусоїда з частотою = 9 гц і = 18 нулями за секунду.

Цей метод може бути прийнятний для визначення частоти синусоїди, яка має набагато більше амплітуду ніж перешкода.

Коли амплітуда перешкоди сумірна або більше амплітуди корисного сигналу, тоді потрібно приймати заходи для захисту від вібраційних та акустичних перешкод чутливих елементів або використовувати додаткову обробку вхідних даних. Перший метод потребує додаткових складних доробок що можуть бути неприйнятними у багатьох конкретних випадках. Другий метод потребує лише додати між датчиком, що відображає або реєструє пристроєм додатковий елемент, де основним елементом буде мікроконролеру, що буде обробляти вхідні дані та з невеликою затримкою видавати більш чистий, позбавлений, значно, від перешкоди далі для подальшої обробки (рисунок 1.4).

Рисунок 1.4 – Відфільтрований та оброблений сигнал.

Безпосередньо завданням для даної роботі було проведення моделювання процесу обробки сигналу від датчику для з’ясування наскільки покращується сигнал після різних типів обробки та визначити найкращій алгоритм обробки або комбінацію алгоритмів.


2 Опис принципів вихрового обліку потоку рідини або газу

 

2.1 Турбулентні течії

Течії рідких і газоподібних середовищ бувають двох типів: 1) спокійні, плавні і 2) нерегулярні, зі значним перемішуванням об’ємів середовища і хаотичною зміною швидкостей і інших параметрів. Перші називають ламінарними, а для других англійський фізик У. Томсон запропонував термін "турбулентні" (від англ. turbulent - бурхливий, безладний). Більшість течій у природі й техніку ставляться саме до другого, найменш вивченій групі. У цьому випадку застосовують статистичні (пов'язані з усередненням за часом і простором) способи опису. По-перше, тому, що практично неможливо встежити за пульсаціями в кожній точці течії, а по-друге, ці дані марні: їх не можна використати в конкретних прикладних програмах [2].

Оскільки турбулентність - одне з найглибших явищ природи, при самому загальному підході до його вивчення воно змикається з філософським проникненням у суть речей. Знаменитий учений Т. Кишеня дуже образно це охарактеризував, сказавши, що, коли стане перед Творцем, перше одкровення, про яке буде просити, - розкрити таємниці турбулентності.

Найбільший практичний інтерес представляють такі плини, які відповідають досить більшим числам Рейнольдса.

Число Рейнольдса визначає співвідношення інерційних сил і сил тертя (в'язкості).

Re = v0R/, (2.1)

де Re – число Рейнольдса;

v 0 – середня швидкість;

R – поперечний розмір каналу;

* - коефіцієнт в’язкості.

З ім’ям англійського фізика і інженера О. Рейнольдса нерозривно пов’язана наука о турбулентних течіях. Йому належить основні початкові результати в даній області, з його робіт почався важливий етап дослідження турбулентності.

Інженерні задачі гідродинаміки потребували систематизації відомостей про важливі макроскопічні властивості турбулентних течій. Така систематизація проводилася. Встановлювалися емпіричні закономірності (для середньої швидкості і розподілення середніх швидкостей по перерізу труби для ефективної в’язкості та ін.), добре узгоджуваний в той чи іншій області вимірювання параметрів з експериментальними даними. Встановлення та використання емпіричних законів – необхідний етап в вивченні та освоєнні будь-якого явища, однак на цьому етапі багато численних “як?” і “чому?” не тільки не знаходять відповіді, але, як правило, не дуже часто і виходять на перший план. Саме працям, які в 1876 р. почав Рейнольдс, було призначено з часом покласти край емпіричній течії у вивченні турбулентності. Систематизуючи та аналізуючи дані про течію рідини по трубах, він основну увагу приділяв переходу ламінарної течії води у турбулентне. Рейнольдс виявив, що перетворення “прямого” руху рідини у “звивистий” відбувається за де якої критичної швидкості , яка зменшується зі збільшення радіусу труби і зі зменшенням в’язкості. Але Головним було те, що йому вдалося встановити закон: безрозмірне відношення.

, (2.2)


де R – радіус труби;

* - швидкість течії;

 - коефіцієнт в’язкості.

Число Рейнольдса повинно досягти приблизно 2000, щоб ламінарний потік став турбулентним. Наведене відношення – назване на честь Рейнольдса його ім’ям, - дозволяє записати встановлений критерій у вигляді:

, (2.3)

де Re – число Рейнольдса;

 - критичне значення числа Рейнольдса, що розділяє ламінарні та турбулентні потоки.

Рейнольдс робив спроби теоретично оцінити  і навіть отримав правдоподібні оцінки, але йому не вдалося зробити цього строго.


Информация о работе «Моделювання процесу обробки сигналів датчика у вихровому потоковимірювачі»
Раздел: Информатика, программирование
Количество знаков с пробелами: 123841
Количество таблиц: 18
Количество изображений: 78

0 комментариев


Наверх