3.         Особенности организации наследственного материала про – и эукариотов

 

Геном современных прокариотических клеток характеризуется относительно небольшими размерами. У кишечной палочки (Е. coli) он представлен кольцевой молекулой ДНК длиной около 1 мм, которая содержит 4·106 пар нуклеотидов, образующих около 4000 генов. Основная масса ДНК прокариот (около 95%) активно транскрибируется в каждый данный момент времени. Как было сказано выше, геном прокариотической клетки организован в виде нуклеоида - комплекса ДНК с негистоновыми белками.

У эукариот объем наследственного материала значительно больше. У дрожжей он составляет 2,3 107 п.н., у человека общая длина ДНК в диплоидном хромосомном наборе клеток - около 174 см. Его геном содержит 3·109 п.н. и включает по последним данным 30-40 тыс. генов.

У некоторых амфибий и растений геном характеризуется еще большими размерами, достигающими 1010 и 1011 п. н. В отличие от прокариот в эукариотических клетках одновременно активно транскрибируется от 1 до 10% ДНК. Состав транскрибируемых последовательностей и их количество зависят от типа клетки и стадии онтогенеза. Значительная часть нуклеотидных последовательностей у эукариот не транскрибируется вообще - молчащая ДНК.

Большой объем наследственного материала эукариот объясняется существованием в нем помимо уникальных также умеренно и высоко повторяющихся последовательностей. Так, около 10% генома мыши составляют тандемно расположенные (друг за другом) короткие нуклеотидные последовательности, повторенные до 106 раз. Эти высоко повторяющиеся последовательности ДНК располагаются в основном в гетерохроматине, окружающем центромерные участки. Они не транскрибируются. Около 20% генома мыши образовано умеренными повторами, встречающимися с частотой 103-105 раз. Такие повторы распределены по всему геному и транскрибируются в РНК. К ним относятся гены, контролирующие синтез гистонов, тРНК, рРНК и некоторые другие. Остальные 70% генома мыши представлены уникальными нуклеотидными последовательностями. У растений и амфибий на долю умеренно и высоко повторяющихся последовательностей приходится до 60% генома.

Избыточность генома эукариот объясняется также экзон-интронной организацией большинства эукариотических генов, при которой значительная часть транскрибированной РНК удаляется в ходе следующего за синтезом процессинга и не используется для кодирования аминокислотных последовательностей белков.

В настоящее время окончательно не выяснены функции молчащей ДНК, которая составляет значительную часть генома, реплицируется, но не транскрибируется. Высказывают предположения об определенном значении такой ДНК в обеспечении структурной организации хроматина. Некоторая часть нетранскрибируемых нуклеотидных последовательностей, очевидно, участвует в регуляции экспрессии генов.

Характеризуя наследственный материал прокариотической клетки в целом, необходимо отметить, что он заключен не только в нуклеоиде, но также присутствует в цитоплазме в виде небольших кольцевых фрагментов ДНК - плазмид.

Плазмиды - это широко распространенные в живых клетках внехромосомные генетические элементы, способные существовать и размножаться в клетке автономно от геномной ДНК. Описаны плазмиды, которые реплицируются не автономно, а только в составе геномной ДНК, в которую они включаются в определенных участках. В этом случае их называют эписомами.

В прокариотических (бактериальных) клетках обнаружены плазмиды, которые несут наследственный материал, определяющий такие свойства, как способность бактерий к конъюгации, а также их устойчивость к некоторым лекарственным веществам.

В эукариотических клетках внехромосомная ДНК представлена генетическим аппаратом органелл - митохондрий и пластид, а также нуклеотидными последовательностями, не являющимися жизненно необходимыми для клетки (вирусоподобными частицами). Наследственный материал органелл находится в их матриксе в виде нескольких копий кольцевых молекул ДНК, не связанных с гистонами. В митохондриях, например содержится от 2 до 10 копий мтДНК.

Внехромосомная ДНК составляет лишь небольшую часть наследственного материала эукариотической клетки. Например, мтДНК человека содержит 16569 п.н. и на её долю приходится менее 1% всей клеточной ДНК.

В отличие от хромосомной ДНК, мтДНК характеризуется высокой «плотностью генов». В них нет интронов, а межгенные промежутки невелики. В кольцевой мтДНК человека содержится 13 генов, кодирующих белки (3 субъединицы цитохром С-оксидазы, 6 компонентов АТФазы и др.) и 22 гена тРНК. Значительная часть белков митохондрий и пластид синтезируется в цитоплазме под контролем геномной ДНК.

Если большинство ядерных генов представлены в клетках организма в двойной дозе (аллельные гены), то митохондриальные гены представлены многими тысячами копий па клетку.

Для генома митохондрий характерны межиндивидуальные различия, но в клетках одного индивида, как правило, мтДНК идентична.

Совокупность генов, расположенных в цитоплазматических молекулах ДНК, называют плазмоном. Он определяет особый тип наследования признаков - цитоплазматическое наследование.

Общие принципы организации наследственного материала, представленного нуклеиновыми кислотами, а также принципы записи генетической информации у про- и эукариот свидетельствуют в пользу единства их происхождения от общего предка, у которого уже была решена проблема самовоспроизведения и записи информации на основе репликации ДНК и универсальности генетического кода. Однако геном такого предка сохранял большие эволюционные возможности, связанные с развитием надмолекулярной организации наследственного материала, разных путей реализации наследственной информации и регуляции этих процессов.

Многочисленные указания на различия в организации генома, деталях процессов экспрессии генов и механизмов ее регуляции у про- и эукариот свидетельствуют в пользу эволюции названных типов клеток по разным направлениям после их дивергенции от общего предка.

Существует предположение, что в процессе возникновения жизни на Земле первым шагом явилось образование самовоспроизводящихся молекул нуклеиновых кислот, не несущих первоначально функции кодирования аминокислот в белках. Благодаря способности к самовоспроизведению эти молекулы сохранялись во времени. Таким образом, первоначальный отбор шел на способность к самосохранению через самовоспроизведение. В соответствии с рассмотренным предположением позднее некоторые участки ДНК приобрели функцию кодирования, т.е. стали структурными генами, совокупность которых на определенном этапе эволюции составила первичный генотип. Экспрессия возникших кодирующих последовательностей ДНК привела к формированию первичного фенотипа, который оценивался естественным отбором на способность выживать в конкретной среде.

Важным моментом в рассматриваемой гипотезе является предположение о том, что существенным компонентом первых клеточных геномов была избыточная ДНК, способная реплицироваться, но не несущая функциональной нагрузки в отношении формирования фенотипа. Предполагают, что разные направления эволюции геномов про- и эукариот связаны с различной судьбой этой избыточной ДНК предкового генома, который должен был характеризоваться достаточно большим объемом. Вероятно, на ранних стадиях эволюции простейших клеточных форм у них еще не были в совершенстве отработаны главные механизмы потока информации (репликация, транскрипция, трансляция). Избыточность ДНК в этих условиях создавала возможность расширения объема кодирующих нуклеотидных последовательностей за счет некодирующих, обеспечивая возникновение многих вариантов решения проблемы формирования жизнеспособного фенотипа.

4.         Биологическое значение геномного уровня организации наследственного материала

 

Геномный уровень организации наследственного материала, объединяющий всю совокупность хромосомных генов, является эволюционно сложившейся структурой, характеризующейся относительно большей стабильностью, нежели генный и хромосомный уровни. На геномном уровне система сбалансированных по дозам и объединенных сложнейшими функциональными взаимосвязями генов представляет собой нечто большее, нежели простую совокупность отдельных единиц. Поэтому результатом функционирования генома является формирование фенотипа целостного организма. В связи с этим фенотип организма нельзя представлять как простую совокупность признаков и свойств, это организм во всем многообразии его характеристик на всем протяжении индивидуального развития. Таким образом, поддержание постоянства организации наследственного материала на геномном уровне имеет первостепенное значение для обеспечения нормального развития, организма и воспроизведения у особи в первую очередь видовых характеристик.

В то же время допустимость рекомбинации единиц наследственности в генотипах особей обусловливает генетическое разнообразие их, что имеет важное эволюционное значение. Мутационные изменения, реализующиеся на геномном уровне организации наследственного материала,- мутации регуляторных генов, обладающих широким плейотропным действием, количественные изменения доз генов, транслокации и транспозиции генетических единиц, влияющие на характер экспрессии генов, наконец, возможность включения в геном чужеродной информации при горизонтальном переносе нуклеотидных последовательностей между организмами разных видов, - оказываясь иногда эволюционно перспективными, вероятно, являются основной причиной ускорения темпов эволюционного процесса на отдельных этапах исторического развития живых форм на Земле.


Заключение

 

В заключении можно отметить, что геномное здоровье человека - это фундамент соматического, психического и репродуктивного здоровья. Это основа эволюции человека как биологического вида.

При этом нарушения структурной и функциональной стабильности генома одного человека опасны только для его здоровья и здоровья его потомков.

Тогда как аналогичные нарушения применительно к популяции человека, например, в случае глобальных катастроф опасны для здоровья человечества в целом, например, здоровье населения, проживаюшего на территориях, прилегающих к ядерным полигонам в американском штате Невада, Семипалатинской области Казахстана, или территориях, граничащих с Чернобыльской АЭС в Украине и других опасны для человечества в целом.

Они ведут к увеличению генетического груза,* включая рост объема гетерозиготного носительства патологических генов и расширение спектра генных, хромосомных, эндокринных, иммунных, сердечно-сосудистых, нервных, психических, онкологических и других заболеваний.


Список использованной литературы

 

1.   Баранов В.С., Баранова Е.В., Иващенко Т.Э., Асаев М.В. Геном человека и гены "предрасположенности". Введение в предиктивную медицину. СПб.: Интермедика, 2000.

2.   Мутовин Г.Р., Иванова О.Г. Проблемы здоровья человека с позиций современной клинической генетики. В сб.: Лекции по актуальным проблемам медицины. М.: РГМУ, 2002.

3.   Фок Р. Генетика эндокринных болезней // Эндокринология (под ред. Нормана Лавина) М., «Практика», 1999.

4.   Ярыгин В.Н. Биология. – М.: Высшая школа, 2003.


Информация о работе «Геномный уровень организации наследственного материала»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 23827
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
101569
2
38

... : генный, хромосомный и геномный. На каждом из них проявляются основные свойства материала наследственности и изменчивости и определенные закономерности его передачи и функционирования. 4. Генный уровень организации генетического аппарата Элементарной функциональной единицей генетического аппарата, определяющей возможность развития отдельного признака клетки или организма данного вида, ...

Скачать
37903
3
6

... к дочери. Голандрический признак передаётся от отца – сыну, т. е. Только по мужской линии. Геном - совокупность гаплоидного (1п) набора хромосом (23 хромосомы). 4. Мутационный процесс и наследственные заболевания человека: а) механизм генных мутаций. Болезни обмена веществ и молекулярные болезни человека. Наследование генных аномалий. Мутации происходят на каждом из перечисленных уровней, и ...

Скачать
62317
4
0

... для накопления в них изменений, дивергенции генов, увеличения разнообразия контролируемых ими продуктов. [1] 2. Роль и мобильных генетических элементов горизонтального переноса генов в эволюции генома 2.1 Мобильные генетические элементы, их свойства Мобильные генетические элементы (МГЭ, подвижные элементы, транспозируемые элементы, транспозоны и т.д.) повсеместно распространены в живой ...

Скачать
40345
0
1

... индивидуальных хромосом; - накапливать сведения об изменениях хромосом в опухолевых клетках, у больных с наследственными заболеваниями крови и т.д. Главный недостаток методов, основанных на использовании низших организмов, заключается в невозможности экстраполировать полученные результаты на человека в связи с отсутствием процессов метаболической активации и детоксикации, характерных для всех ...

0 комментариев


Наверх