6.3 Расчет осадкоприемных окон

 

Избыточное количество взвешенного осадка поступает в осадкоуплотнитель через осадкоприемные окна.

Площадь осадкоприемных окон ƒОК, м2 рассчитывается по общему расходу воды поступающей с избыточным осадком в осадкоуплотнитель.

qОС = (1 – КР.В) х qРАСЧ,

где qРАСЧ – расчетный расход на один осветлитель, м3/ч;

qРАСЧ = qЧ / n,

qРАСЧ = 308,75 / 1 = 308,75 (м3/ч)

qОС = (1 – 0,75) х 308,75 = 77.18 (м2)

С каждой стороны в осадклуплотнитель будет поступать qОК, м3/ч,


qОК = qОС / 2.

qОК = 77.18 / 2 = 38.59 (м3/ч)

Площадь окон с каждой стороны осадкоуплотнителя ƒОК, м2

ƒОК = qОК / VОК,

где VОК – скорость движения воды с осадком в окнах, принимается равной с 10–15 мм/с (36–54 м/ч) в соответствии с п. 6.83 [2].

ƒОК = 38.59 / 50 = 0,77 (м2)

Высота окон hОК = 0,2 м, тогда общая их длина с каждой стороны осадкоуплотнителя

ОК = ƒОК / 0,2 м.

ОК = 0,77 / 0,2 = 3.85 (м)

Устраиваем с каждой стороны по 10 окон, с расстоянием между ними 0,4–0,5 м.

6.4 Определение высоты осветлителя

 

Высота осветлителя считается от центра водораспределительного коллектора до верхней кромки водосборных желобов НОСВ, м

НОСВ = (bК – 2 х bЖ) / 2 х tg 0,5 α,

где α – центральный угол, образованный прямыми, проведенными от оси водораспределительного коллектора к верхним точкам кромок водосборных желобов, должен быть не более 30˚.

НОСВ = (2.6 – 2 х 0,64) / 2 х 0,2679 = 1,98 (м)

Высота пирамидальной части осветлителя hПИР, м

hПИР = (bК – а) / 2 tg 0,5 α1,

где а – ширина коридора по низу, м, принимается 0,4 м;

α1 - центральный угол наклона стенок коридора к горизонтали, α1 = 60–70˚.

hПИР = (2,6 – 0,4) / 2 х 0,6249 = 1,76 (м)

Высота вертикальных стенок hВЕРТ, м осветлителя в пределах взвешенного слоя должна быть не менее 1–1,5 м.

hВЕРТ = НОСВ - hЗАЩ - hОК - hПИР,

где hЗАЩ - высота защитного слоя над перепускными окнами; принимается 1,5 м для мутных и 2 м для цветных вод.

hВЕРТ = 1.98 – 2 – 0,2 – 1,76 = 1,9 (м)

Если hВЕРТ не вошла в пределы 1–1,5 м, надо изменить высоту осветлителя НОСВ, изменив угол α.

Общая высота зоны взвешенного осадка hВ. О, м, должна находиться в пределах 2–2,5 м и определяется из соотношения:

hВ.О = hВЕРТ + 0,5 х hПИР.

hВ.О = 1,9 + 0,5 х 1,76 = 2,78 (м)

 

6.5 Расчет осадкоуплотнителя

 

Расчет заключается в определении необходимого объема осадкоуплотнителя W, м3, продолжительности уплотнения осадка Т, ч и расчете шламоотводящих труб.

Рабочий объем осадкоуплотнителя W, м3 при одной трубе

W = ℓКОР х [bО.У х hВЕРТ + (0,5 х hПИР х bО.У / 2)].

W = 12.36 х [1,73 х 1,9 + (0,5 х 1,76 х 1,73 / 2)] = 41.38 (м3)

 

Время накопления осадка Т, ч

Т = W х δСР / qОС,

где qОС - количество взвешенных веществ, поступающих в осадкоуплотнитель, кг/ч

qОС = 1000 кг/ч

Средняя концентрация взвешенных веществ принимается 24 кг/м3

Т = 41.38 х 24 / 1000 = 0.99 (ч)

Дырчатые трубы для удаления осадка (шлама) располагаются по продольной оси дна, где сходятся наклонные стенки осадкоуплотнителя.

Диаметр шламоотводящих труб dШ, мм рассчитывается из условия отведения накопившегося осадка не более, чем за t =15–20 мин, при скорости осадка в конце трубы VШ не менее 1 м/с и в отверстиях VШОТВ не более 3 м/с. (п. 6.87 [2]).

Через каждую шламовую трубу должен обеспечиваться пропуск расхода qОС1, м3/ч за расчетное время

qОС1 = W / (nОС х t) → k/c → м3/c

где nОС - количество осадкоотводящих труб, шт., принимается 1 или 2 в зависимости от ширины осадконакопителя.

qОС1 = 41.38 / (1 х 0,25) = 165.52 (м3/ч)0,0459 м3

По расходу qОС1 и скорости в трубе, по таблицам [4], подбирается dШ, мм, причем диаметр шламоотводящих труб должен быть не менее 150 мм.

Площадь отверстий шламовой трубы ƒОШ, м2

ƒОШ = qОС1 / VШОТВ

ƒОШ = 0,0459 / 3 = 0,015 (м2)

 

Принимаем диаметр отверстий dШОТВ не менее 20 мм, определяем площадь одного отверстия ƒОШ1, м2 и количество отверстий nОШ, шт.

nОШ = ƒОШ / ƒОШ1.

 

Шаг отверстий ℓ2 = ℓК / nОШ, м не должен быть более 0,5 м.




Информация о работе «Техника улучшения качества природных вод»
Раздел: Экология
Количество знаков с пробелами: 38459
Количество таблиц: 9
Количество изображений: 4

Похожие работы

Скачать
23662
0
4

... , что ограничивает их производительность.   3. Основные критерии для выбора технологической схемы и состава сооружений для подготовки питьевой воды Выбор технологической схемы улучшения качества воды зависит не только от качества воды источника и требований потребителя, но и от количества потребляемой воды. Например, для обработки небольшого количества цветной или мутной воды не может быть ...

Скачать
65905
9
4

... 3 - В основные фазы водного режима Обязательная программа Гидробиологические показатели позволяют: 1. Определить экологическое состояние водных объектов. 2. Оценить качество поверхностных вод как среды обитания организмов. 3. Определить совокупный эффект комбинированного воздействия загрязняющих веществ. 4. Определить специфический состав воды и ее происхождение. 5. ...

Скачать
34283
0
0

... Кавказские республики, Калмыкия, Смоленская, Архангельская, Курганская области, Дагестан, Карелия, Астраханская, Омская, Волгоградская области, Дальний Восток. В Москве и Санкт-Петербурге качество питьевой воды хоть и вызывает нарекания со стороны жителей, но продолжает держать планку лидера по органолептическим и химическим показателям. Проблема обеспечения населения Российской Федерации ...

Скачать
88030
20
9

... очистки природных вод. Киев: Вища школа. 1981. 328 с. 2.     Небера В.П. Флокуляция минеральных суспензий. М.: Недра. 1983. 288 с. 3.     Вейцер Ю.И., Минц Д.М. Высокомолекулярные флокулянты в процессах очистки природных и сточных вод. М.: Стройиздат. 1984. 202 с. 4.     Запольский А.К., Баран А.А. Коагулянты и флокулянты в процессах очистки воды: Свойства. Получение. Применение. М.: Химия. ...

0 комментариев


Наверх