3. Расчет установок реагентного хозяйства

 

Для осветления воды на ВОС предусматривается предварительная обработка воды коагулянтом и в зимнее время добавление флокулянта.

3.1 Определение дозы реагентов для обработки воды

 

Необходимая доза коагулянта определяется по таблице 16 [2] в зависимости от мутности воды в паводковый и меженный периоды. В качестве коагулянта применяется сернокислый алюминий – Al2(SO4)3 x 18 H3O.

Так как мутность воды М = 150 мг/м3, то доза коагулянта по мутности:

Дк = 35 мг/л.

Определяем дозу коагулянта по цветности:

Дк =  =  = 38.

Так как в исследуемой воде присутствует и цветность, и мутность, то выбираем наибольшую дозу коагулянта – 38 мг/л (по цветности).

Необходимая доза подщелачивающих реагентов определяется в зависимости от принятой дозы коагулянта по п. 6.19 [2]:

Дщ = Кщ х (Дк / ек – ЩО) + 1,

где Дщ – доза извести, мг/л;

Кщ – Коэффициент, равный для извести (по СаО) – 28;

Дк – доза коагулянта, мг/л;

ек – эквивалентная масса коагулянта (безводного) в мг/мг-экв., принимается для Al2(SO4)3 – 57;

Що – щелочность воды (карбонатная жесткость воды), мг-экв/л.

Дщ = 28 (38 / 57 – 3,49) + 1 = – 78,05

Так как получился отрицательный результат, то подщелачивание не требуется.

Уточненная мутность воды Си, мг/л, подлежащей осветлению с учетом ее реагентной обработки (с коагулянтом и известью вносятся дополнительные взвешенные вещества за счет недостаточной чистоты применяемых реагентов), определяется по п. 6.64 [2].

Си = М + Кк х Дк + 0,25Ц + Ви,

где М – количество взвешенных веществ в исходной воде, г/м3; принимается равным мутности воды;

Кк – коэффициент, принимаемый для очищенного сернокислого алюминия – 0,5, для неочищенного коагулянта – 1,2.

Ви – количество нерастворенных веществ, вводимых с известью, г/м3. Не требуется.

Си = 140 + 0,5 х 38 + 0,25 х 90 = 181,5 (мг/л);

3.2 Хозяйство приготовления раствора коагулянта

Коагулянт подается в обрабатываемую воду в виде раствора определенной концентрации, для чего в реагентном хозяйстве предусматриваются растворные (затворные), расходные баки и дозирующие устройства. Расчет растворных и расходных баков заключается в определении их емкости, подборе воздуходувок и диаметра воздуховодов [2].

Объем растворного бака Wр, м3:

Wp = (qрасч х n x Дк) / (10000 х  х bp),

где qрасч – расчетная часовая производительность ВОС, м3/ч;

n – время полного цикла приготовления раствора коагулянта принимается по п. 6.22 [2] равной 10 часам;

Дк – максимальная доза коагулянта;

 – объемная масса раствора коагулянта в растворном баке, %, принимаем 24% (для гранулированного коагулянта).

Wp =  = 48.8 (м3).

Количество растворных баков надлежит принимать с учетом объема разовой поставки, способа доставки и разгрузки коагулянта, его вида, а также времени растворения (п. 6.22 [2]). Растворных баков должно быть не менее трех.

Конструктивно, растворные баки в нижней части следует проектировать с наклонными стенками под углом  к горизонтали для неочищенного и  – для очищенного коагулянта. Для опорожнения баков предусматриваются трубопроводы диаметром не менее 150 мм. При применении кускового коагулянта в баках устанавливаются съемные колосниковые решетки с прозорами 10–15 мм (п. 6.24).

Для ускорения процесса растворения рекомендуется использовать воду, подогретую до С. Схема растворного бака представлена на рисунке 3.

Объем растворного бака W расх, м3 определяют по формуле:

Wрасх = (bp x Wp) / b,

где b – концентрация раствора коагулянта в расходном баке до 12%.

Wрасх = (0,24 * 48.8) / 0,12 = 97.6 (м3).



1 – колосниковая решетка; 2 – коагулянт; 3, 4 – верхняя и нижняя распределительная система для подачи сжатого воздуха; 5 – поплавок; 6 – подача воды для растворения коагулянта (подогретой до С); 7 – подача сжатого воздуха; 8 – отбор раствора коагулянта; 9 – сброс осадка.

Рисунок 3 – Схема растворного бака

Количество расходных баков должно быть не менее двух (п. 6.2 [2]). Днища расходных баков имеют уклон не менее 0,01 к сбросному трубопроводу диаметром не менее 100 мм. При применении неочищенного коагулянта забор раствора следует выполнять из верхнего слоя шлангом с поплавком.

Внутренняя поверхность баков (растворных и расходных) покрывается кислостойкими материалами (п. 6.27 [2]). Принимаем растворные и расходные баки кубической формы в плане, глубиной 0,6 – 0,25 м и определяем площади Fр и Fрасх, м.

Ускорение растворения коагулянта и перемешивание его в баках обеспечивается подачей сжатого воздуха с интенсивностью: для растворения р = 8 – 10 л/с*м2, для перемешивания в расходных баках расх = 3 – 5 л/с*м2 п. 6.23 [2], для чего в реагентном хозяйстве устанавливаются воздуходувки.

Общее количество сжатого воздуха, Qвоз, л/с:


Qвоз = Qвозр + Qвозрасх

Количество сжатого воздуха, необходимое для растворения коагулянта, Qвозр, л/с, определяем по формуле:

Qвозр = р х Fр

Количество сжатого воздуха, необходимое для перемешивания коагулянта, Qвозрасх, л/с, определяем по формуле:

Qвозрасх = расх х Fрасх

Распределение воздуха следует производить с использованием дырчатых труб из кислотостойких материалов (полиэтилен). Расчет распределительной системы заключается в подборе диаметров воздуховодов по расходу и скорости движения воздуха в трубах; подборе их перфорации. Скорость движения воздуха в трубах принимается VВОЗ = 10–15 м/с. Скорость выхода воздуха из отверстий 20–30 м/с; диаметр отверстий 3–4 мм. Отверстия направлены вниз.

 


Информация о работе «Техника улучшения качества природных вод»
Раздел: Экология
Количество знаков с пробелами: 38459
Количество таблиц: 9
Количество изображений: 4

Похожие работы

Скачать
23662
0
4

... , что ограничивает их производительность.   3. Основные критерии для выбора технологической схемы и состава сооружений для подготовки питьевой воды Выбор технологической схемы улучшения качества воды зависит не только от качества воды источника и требований потребителя, но и от количества потребляемой воды. Например, для обработки небольшого количества цветной или мутной воды не может быть ...

Скачать
65905
9
4

... 3 - В основные фазы водного режима Обязательная программа Гидробиологические показатели позволяют: 1. Определить экологическое состояние водных объектов. 2. Оценить качество поверхностных вод как среды обитания организмов. 3. Определить совокупный эффект комбинированного воздействия загрязняющих веществ. 4. Определить специфический состав воды и ее происхождение. 5. ...

Скачать
34283
0
0

... Кавказские республики, Калмыкия, Смоленская, Архангельская, Курганская области, Дагестан, Карелия, Астраханская, Омская, Волгоградская области, Дальний Восток. В Москве и Санкт-Петербурге качество питьевой воды хоть и вызывает нарекания со стороны жителей, но продолжает держать планку лидера по органолептическим и химическим показателям. Проблема обеспечения населения Российской Федерации ...

Скачать
88030
20
9

... очистки природных вод. Киев: Вища школа. 1981. 328 с. 2.     Небера В.П. Флокуляция минеральных суспензий. М.: Недра. 1983. 288 с. 3.     Вейцер Ю.И., Минц Д.М. Высокомолекулярные флокулянты в процессах очистки природных и сточных вод. М.: Стройиздат. 1984. 202 с. 4.     Запольский А.К., Баран А.А. Коагулянты и флокулянты в процессах очистки воды: Свойства. Получение. Применение. М.: Химия. ...

0 комментариев


Наверх