1.4. Каталитические реакции

 

Каталитическими называются реакции, протекающие с участием веществ-катализаторов, не входящих в состав конечных продуктов. Катализаторы вступают во взаимодействие с участни­ками данной реакции, образуют с ними те или иные промежуточ­ные вещества, включаются в состав активного комплекса, а после реакции вновь выделяются. Различают положительный катализ (ускорение реакции) и отрицательный катализ (замедление реак­ции, или ингибирование).

В некоторых случаях катализатором является один из про­дуктов реакции. Такая реакция называется автокаталитической. При гомогенном катализе катализатор и все реагирующие вещества составляют одну фазу. Различают следующие типы го­могенного катализа: кислотно-основной катализ органических ре­акций, катализ d-переходными ионами и катализ металлорганическими комплексами. При гетерогенном катализе реагирующие вещества и катализатор находятся в различных фазах, а каталитическая реакция протекает на поверхности раздела фаз. Гетерогенный катализ включает пять обратимых стадий: диффузию реагентов, адсорбцию (сначала физическую, затем химическую), химическую реак­цию, десорбцию продуктов и их диффузию.

Все гетерогенные катализаторы можно подразделить на четыре класса: d-переходные металлы, полупроводниковые оксиды, изоляторы (диэлектрики) и кислотные катализаторы.

Особым видом катализаторов являются ферменты - белко­вые молекулы с молекулярной массой от 105 до 107 г/моль.

Эти катализаторы характеризуются следующими свойст­вами:

-фермент способен катализировать только одну специфическую реакцию или реакцию одного типа;

-обладают высокой эффективностью даже в очень небольших ко­личествах;

-наибольшей активностью обладают при температуре 310 К (температуре человеческого тела, при температуре выше 323-333 К разрушаются;

-ферменты очень чувствительны к присутствию каталитических ядов.

Каталитические реакции характеризуются следующими общими особенностями:

1) Катализатор не влияет на термодинамическое равнове­сие. Он изменяет лишь скорость достижения состояния равновесия.

2) Действие катализатора специфично. Из всех возможных реакций данных реагирующих веществ определенный катализатор избирательно усиливает лишь некоторые.

3) Скорость гомогенной каталитической реакции чаще всего пропорциональна концентрации катализатора.

4) Действие катализатора зависит от его физического со­стояния и от присутствия посторонних веществ. Промоторы уси­ливают действие катализатора, а каталитические яды снижают активность катализатора.

5) Смесь катализаторов часто действует значительно сильнее, чем отдельные катализаторы.

 

1.5 Сущность каталитического действия

Если энергия активации высока, то лишь небольшая доля сталкивающихся молекул имеет энергию, достаточную для того, чтобы произошла реакция, а если она низка, то реагирует боль­шая часть молекул, и поэтому константа скорости будет большой. Из этого следует, что если каким-либо образом можно снизить энергию активации, то реакция должна протекать с более высокой скоростью.

Катализатор - это вещество, которое заставляет реакцию протекать быстрее, снижая энергию активации лимитирующей стадии. Некоторая мера эффективности катализаторов может быть получена при рассмотрении изменений энергии активации различных реакций, которые обусловлены наличием катализато­ров. При разложении перекиси водорода в отсутствие катализато­ра энергия активации равна 76 кДж/моль, и при комнатной тем­пературе разложение протекает очень медленно. Если добавить небольшое количество иодида, происходит та же самая реакция, но с энергией активации 57 кДж/моль, и, таким образом, при ком­натной температуре (когда RT = 2,5 кДж/моль) константа скоро­сти лимитирующей стадии увеличивается в

К(катализатор)/К(без катализатора) = е7,6 ≈ 2000 раз.

Более существенное изменение энергии активации проис­ходит при добавлении ферментов к биохимическим системам.

Фермент является биологической молекулой, которая об­ладает большой эффективностью. Это иллюстрируется изменени­ем энергии активации в реакции гидролиза сахарозы от 107 кДж/моль в присутствии иона гидрооксония до 36 кДж/моль при добавлении небольшого количества фермента сахаразы. Та­кое изменение энергии активации соответствует изменению значе­ния скорости на 22 порядка.

 

1.6 Методы расчета энергии активации и предэкспоненциального множителя

В большинстве случаев для расчета энергии активации Еа по экспериментальным данным используют интегральную форму уравнения Вант-Гоффа-Аррениуса (6) или его запись в виде:

lgK = lgKo - Е а/2,303 RT (9)

Следовательно, lgK линейно зависит от обратной абсо­лютной температуры (см. рисунок)

Значение Еа находят по тангенсу угла наклона прямой, проходящей через экспериментальные точки: Е а= -2,303Rtgα.

Предэкспоненциальный множитель К0 определяется от­резком, отсекаемым продолжением прямой на оси ординат при 1/Т = 0.

Если имеются значения константы скорости химической реакции при двух температурах, то из уравнения (9) можно полу­чить:

Еа =(2,303RT1T2 lgK2 /K1 )/(T2-T1) (10)

Энергия активации Еа имеет размерность энергия/моль и измеряется в единицах Дж/моль. Размерность К0 совпадает с раз­мерностью константы скорости. Теория и экспериментальные данные (для широкого температурного интервала) показывают, что Еа и К зависят от температуры. Однако эту зависимость мож­но не учитывать, если реакции исследуются в достаточно узком температурном интервале.

Изложенный выше метод расчета Еа предполагает, что константы скорости реакций при различных температурах извест­ны.

Однако, есть способ расчета Еа, так называемый метод трансформации, который не требует знания K=f(T).

Пусть при температурах T1 и T2 в смесях одного и того же начального состава протекает химическая реакция. Если к момен­там времени τ1 и τ2 реакция прошла на одну и ту же глубину, то есть изменения концентраций исходных веществ или продуктов реакции одинаковы, то отношение скоростей реакции равно:

W1 / W2 = (dC/d τ1 ) /(dC/d τ2) = d τ2 / d τ1. (11)

Заменим в уравнении (11) скорости реакций при заданных температурах соотношением (4)

. (11а)

Таким образом, отношение K1 /K2 можно заменить отно­шением τ1 / τ2

Подставим в отношение (11а) значения констант скорости при температурах T1 и Т2, используя уравнение Аррениуса (5):

K0exp(-Ea/RT1)/ K0exp(-Ea/RT2) = d τ2 / d τ1.

Полагая, что для узкого температурного интервала К0 и Еа= const находим

ехр[-Ea/R(l/T1 - 1/Т2)] = d τ2 / d τ1. (12)

Разделение переменных и интегрирование дают:

ехр[-Еа(Т2 – T1 )/RT1 T2 ] = τ2 / τ1. (13)

Следовательно, при заданных T1 и Т2 отношение τ2 / τ1 для реакций, протекающих на одну и ту же глубину, постоянно и называется коэффициентом трансформации. Если этот коэффици­ент известен, то значение энергии активации рассчитывается по формуле:

Еа = R[T1 T2 /(Т2 – T1)]-ln(τ2 / τ1). (14)

Реакция иодирования ацетона

В качестве объекта исследования в данной работе выбрана реакция иодирования ацетона. Реакция

СНзСОСНз + I2 = СНзСОСH2I + HI (15)

катализируется кислотами Бренстеда(донорами протонов). Эта реакция катализируется сильной минеральной кислотой.

Как видно из уравнения, один из продуктов реакции - иодоводородная кислота (катализатор). Поэтому концентрация ка­тализатора в ходе опыта возрастает. Такие процессы называются автокаталитическими.

Можно выделить две стадии реакции. На первой происхо­дит таутомерное превращение кетона в енол, катализатор - ионы оксония:

СНзСОСНз—> СНзС(ОН)=СН2; К1  (16)

Затем (вторая стадия ) енол реагирует с иодом:

СНзС(ОН)=СН2 + I2 = CH3COCH2I + HI; К2 (17)

Вторая стадия очень быстрая, а первая - скорость лимити­рующая. Поэтому скорость реакции равна скорости енолизации ацетона:

dc/dτ = К1СасHO(18)

где Са - концентрация ацетона;

С H3O+ - концентрация ионов оксония (ионов водорода). От концентрации иода скорость реакции не зависит. Обозначим через а и b - числа моль ацетона и оксоний-ионов в начальный

момент времени в колбе объемом V; х - количество прореагировавших ацетона и иода,

равное количеству вновь образовавшихся оксоний-ионов.

Тогда:

Са = (a-x)/V; СH3O+ = (b+x)/V. (l 9)

Подставляя (19) в (18), находим:

dx/dτ = (K1/V)(a-x)(b+x).

После интегрирования этого уравнения в пределах от х=0 до х и от τ=0 до х, разрешения относительно K1 получим выраже­ние:

K1 = V/(a+b)τ*In a(b+x)/(a-x)b, (20)

в котором числа моль а и b - заданы условиями приготовления ра­бочей смеси, а х в зависимости от τ определяют путем титрования иода тиосульфатом натрия.

Если перейти к концентрациям веществ, участвующих в реакции, то уравнение (20) приобретет вид:

(21)

где С°а - начальная концентрация ацетона, моль-экв/л;

С H3O+ - начальная концентрация ионов оксония (ионов водорода), моль-экв/л;

Сх - количество прореагировавшего ацетона за время

реакции т, моль-экв/л;

τ - время протекания реакции.

По уравнениям (20) и (21) можно рассчитать константу скорости реакции, используя данные о концентрации веществ, участвующих в реакции.


Информация о работе «Энергия активации»
Раздел: Химия
Количество знаков с пробелами: 21350
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
33968
0
3

... основные закономерностей активации LiAl, LixC6 и С8С3 электродов путем механических, физико-химических и электрохимических воздействий, а также изучние обратимой работа модифицированных электродов, работающих по "принципу электрохимического внедрения, в макетах литиевых аккумуляторов. Задачи исследования. Для достижения поставленной цели потребовалось: -провести комплексное систематическое ...

Скачать
15429
0
15

... можно судить с тех же позиций, которые применяются в координационной химии для связи металл-лиганд, для характеристики изменений свойств лиганда (т.е. его активации). Основные понятия координационной химии   В основе современных представлении о природе комплексов лежит координационная теория Вернера (1893 г.). Основные положения теории А. Вернер вывел, рассматривая соединения, которые либо ...

Скачать
191966
8
41

... или кислот; так получают, например, золь гидроксида железа(III), имеющий следующее строение: {[Fe(OH)3]m n FeO+ · (n–x)Cl–}x+ x Cl– 4.2.2 Агрегативная устойчивость лиофобных коллоидов. Строение коллоидной мицеллы Лиофобные коллоиды обладают очень высокой поверхностной энергией и являются поэтому термодинамически неустойчивыми; это делает возможным самопроизвольный процесс уменьшения ...

Скачать
89044
1
4

... : ,(2.8) где фотопроводимость; — константа для данного образца;  — термическая энергия активации проводимости (обычно 0,1—0,3 эв). Знак световых носителей тока у большинства органических полупроводников дырочный. Некоторые адсорбированные пары и газы существенно изменяют фотоэлектрическую чувствительность органических полупроводников. Зависимость фототока от освещенности выражается ...

0 комментариев


Наверх