4.2    Введение в вейвлеты

Фундаментальная идея вейвлетов – анализ согласно масштабу. Некоторые исследователи использующие вейвлеты считают, что это новый тип мышления, будущее обработки данных.

Вейвлеты – функции, которые удовлетворяют нескольким математическим условиям и используются в представлении данных или других функций. Их идея не нова. Аппроксимация при использовании суперпозиции функций существует с 1800 года, когда Джозеф Фурье открыл, что он может при помощи синусов и косинусов представить другие функции. Однако, в вейвлет-анализе масштаб используемый при представлении данных играет особую роль. Вейвлет-алгоритм обрабатывает данные при разных масштабах или разрешениях. Если мы посмотрим на сигнал через «маленькое окно», мы отметим мелкие детали. Если мы посмотрим на сигнал через «большое окно», мы отметим крупные детали. Особенность вейвлет-анализа состоит в том, что мы видим, и лес, и деревья, так сказать.

Это делает вейвлеты интересными и полезными. Многие десятилетия ученые хотели использовать другие базовые функции, чем синусы и косинусы для Фурье-анализа, для аппроксимации волнистых сигналов. По их определению, эти функции не локальные (и растягиваются до бесконечности). Они делали «дурную работу» аппроксимируя резкие всплески. Но при помощи вейвлет-анализа, мы можем использовать аппроксимирующие функции имеющие границы существования. Вейвлеты хорошо подходят для аппроксимации данных с резкими сосредоточенными неоднородностями.

Процедура вейвлет-анализа состоит в адаптировании вейвлет-прототипа, называемого анализирующим вейвлетом или вейвлет-предок. Временной анализ проводится с сжатым, содержащим высокие частоты вейвлетом-прототипом, а частотный анализ – проводится с расширенным, низкочастотным тем же самым вейвлет-прототипом. Потому что исходный сигнал может быть представлен в терминах вейвлетов (используя коэффициенты в линейной комбинации вейвлет-функций), операции с данными могут быть выполнены используя только соответствующие вейвлет-коэффициенты. И если вы выберете лучший вейвлет адаптированный к вашим данным или отсечете коэффициенты ниже порога, ваши данные будут представлены выборкой. Это кодирование делает вейвлеты превосходным инструментом в области сжатия данных. [4]

4.3  Реконструкция изображений

Наиболее привлекательное свойство вейвлет-преобразований состоит в том, что они подходят для анализа при различных разрешениях и это может предотвратить блокирующий эффект. Основная идея мультиразрешения – разделить исходное изображение на несколько подызображений с коэффициентом 8, и затем, анализировать их отдельно. Этот процесс сходен с распознаванием образов.

Гроссман, Морлет и Мейер разработали математическую вейвлет-теорию. Эта теория была соединена с квадратурным зеркальным фильтром для поддиапазонного кодирования Давбеши и Вайдханатана. Давбеши представила ортогональные вейвлеты основанные на итерациях дискретных фильтров. Вайдханатан представил хорошо организованные результаты КЗС теории. Бурт и Адельсон предложили пирамиду Лапласиана для использования в качестве кодирующей схемы, как древовидное представление ортогонального изображения.

Для конструирования эффективной кодирующий системы на основе вейвлет-теории нужно выполнить 2 основных шага. Первый – выбор оптимального вейвлет-базиса для входного сигнала, и второй – разработка алгоритма кодирования для вейвлет-теории. Рамшандран и Ветерли использовали вейвлеты для достижения самого эффективного базиса основанного на дисторсии заданного изображения. Тевфик предложил метод для поиска оптимального вейвлета для входного сигнала используя вейвлет Помена имеющий некоторые степени свободы. Антонини разработал биортогональный сплайновый вейвлет-фильтр работающий очень хорошо и быстро. [13]


5   Камеры

 

5.1  Модель ПЗС камеры и ее применение

 

Приборы с зарядовой связью (ПЗС) часто используются в качестве приемников в оптико-цифровой обработке изображений и оптических измерениях. Если эти устройства подключены к стандартной плате ввода изображения (захватчик кадров) и используются для точного пространственно-энергетического описания светового сигнала, то доскональное понимание режима работы системы необходимо, т.к. в этом случае система не является пространственно инвариантной.

Модуляционная передаточная функция (МПФ) и функция передачи контраста (ФПК) являются общепринятыми для анализа импульсного отклика оптических приборов в области пространственных частот. Эти методы были дополнены для применения к дискретным приемным системам таким, как ПЗС-камеры. МПФ используются для характеристики физических лимитов разрешения оптической системы, однако, она не подходит для точного восстановления входного аналогового изображения захваченного ПЗС камерой, особенно в случае изображений содержащих высокие пространственные частоты, т.е. близкие к половине частоты выборки. [5]

5.2      Радужная 3D камера

Наша радужная 3D камера позволяет получить непрерывное полнокадровое 3D изображение, что не достижимо для других доступных на данный момент коммерческих 3D систем при любой их стоимости. Уникальные свойства нашей радужной камеры следующие:

§    радужная 3D система имеет унаследованное свойство захвата полнокадрового 3D изображения (256´256, 512´512, 1024´1024 за кадр) от ПЗС камеры (при скорости 60 кадров/сек);

§    не существует теоретического лимита по скорости (т.е. как много кадров в секунду) захвата кадров нашей 3D системой. При современных достижениях технологии ПЗС камер, 3D изображающая система основанная на 3D радужном концепте с частотой более чем несколько тысяч кадров в секунду может быть реализована. Это свойство очень подходит для высокоскоростных задач и систем реального времени, таких как краш-тесты;

§    в отличие от 3D сканирующей лазерной системы, в нашей системе отсутствуют механические подвижные части, т.е. конструкция будет существенно проще и надежнее, также отсутствует проблема безопасности зрения. Система может быть сконструирована очень «резко» для работы в нескольких помещениях для быстрой установки;

§    радужная 3D камера может быть интегрирована, используя имеющиеся под рукой устройства, что приводит к очень низкой стоимости и короткому времени производства;

§    радужная камера также может предоставить нормальную 2D картинку интенсивности объекта используя одну камеру. Это достигается контролированием освещения или соответствующими процедурами обработки изображений. 3D изображения и 2D изображения интенсивности получены при помощи одной и той же камеры, позволяют получить полную картину и существенно улучшают распознавание образов и т.д. в системах машинного зрения.

[6]

5.3      Высокоскоростная камера высокого разрешения

Оптическая томография – это интерферометрическая техника обработки изображений, которая позволяет получать изображения внутренних биологических тканей. В стандартном временном исполнении, положением зеркала осуществлялось сканирование, чтобы получить глубинный профиль образца. Альтернативный метод получения этой информации – используя спектральную плотность взаимнокорреляционной функции реконструировать интерферограмму, детектируя интерференционный сигнал, как функцию длины волны. Спектральная томография также известна, как FD-OCT, не имеет необходимости в модуляции длины опорного плеча и следовательно имеет больший потенциал для высокоскоростных приложений. Несмотря на то, что этот метод был предложен и продемонстрирован, только недавно было показано, что SD-OCT может предоставить лучшую чувствительность, чем временной метод.

В этом отчете мы продемонстрировали SD-OCT с рабочим циклом 98% при использовании высокоскоростной камеры с захватчиком кадров. Заряд передается от фотодиода в регистр хранения ПЗС за 700нс, занимая 2% времени строчной развертки 34,1мкс. Шумовые характеристики и зависимость глубины от чувствительности были предоставлены. Частота захвата кадров составила 29кадров/сек, частота выводимого изображения – 10кадров/сек. 3-ехмерная реконструкция изображения сетчатки была реализована из накопленных данных. [11]


Заключение

 

Интерес к СМЗ со стороны потенциальных покупателей в России только начинает обозначаться, однако во многих промышленно-развитых странах СМЗ стали неотъемлемой частью автоматизированных производств.

При использовании СМЗ:

§   автоматизируются технологические операции, участие в которых персонала представлялось ранее незаменимым;

§   достигается 100% надежность при 100% контроле качества изделий;

§   появляется возможность полностью автоматизировать учет движения материалов на производстве;

§   снижаются расходы на обучение и оплату труда дополнительного персонала.

Создание СМЗ - сложная техническая задача, которая требует правильного выбора аппаратных средств (камер, оптики, плат ввода видеоизображений в компьютер) и разработки управляющей программы для каждого конкретного приложения. При этом возрастает роль системной интеграции и разработки решений "под ключ".

Технологии, на основе которых создается аппаратное обеспечение СМЗ находятся в постоянном развитии: совершенствуются ПЗС-приборы (камеры различных типов), технологии ввода видеоизображений в компьютер, программные средства, реализующие алгоритмы распознавания образов. Таким образом, пользователи таких систем могут быть уверены, что их оборудование и программное обеспечение может быть усовершенствовано при минимальных затратах. Поскольку стоимость технологий СМЗ постоянно снижается, а их производительность растет, положительный эффект от их использования со временем станет все более и более ощутимым.


Список использованной литературы

1.    “How to measure MTF and other properties of lenses”, Optikos Corporation, 1999

2.    “Operational amplifiers”, 2004

3.    “Si Photodiode”, Application Notes, 2002

4.    Amara Graps “An Introduction to Wavelets”, 1995 Institute of Electrical and Electronics Engineers, Inc.

5.    Chander P. Grover «Model for charge-coupled video camera and its application to image reconstruction», © 2005 Optical Society of America

6.    Z. Jason Geng, “Rainbow three-dimensional camera: new concept of high-speed three-dimensional vision systems”, © 2005 Optical Society of America

7.    Reinhard Jenny, M.S. Physics, “Fundamentals of Optics An Introduction for Beginners”, Volpi AG, 2000

8.    Jack Lacy, Schuyler R. Quackenbush, “Intellectual property protection systems and digital watermarking”, © 2005 Optical Society of America

9.    Tony R. Kuphaldt, “Basic concepts of electricity”, 2004

10.  Mathias Hain, Wolff von Spiegel, Marc Schmiedchen, “3D integral imaging using diffractive Fresnel lens arrays”, © 2005 Optical Society of America

11.  N.A. Nassif, B. Cense, B.H. Park, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve”, © 2005 Optical Society of America

12.  Ronald A. Petrozzo and Stuart W. Singer Schneider Optics Hauppauge, NY- « Telecentric lenses simplify noncontact metrology» - Test & Measurement World, 10/15/2001

13.  Yongkyu Kim, “Wavelet transform image compression using human visual characteristics and a tree structure with a height attribute”, © 2005 Optical Society of America

14.  Zhaoxin Wu, Liduo Wang, Yong Qiu “Contrast-enhancement in organic light-emitting diodes”, © 2005 Optical Society of America


Информация о работе «Машинное зрение»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 31275
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
123813
0
0

... за несколько секунд. Причем искать можно в любой форме. Некоторые, например Lingvo, встраиваются во все основные офисные приложения и выделенное слово можно переводить нажатием нескольких клавиш. Преимущества электронных словарей При традиционном подходе минимальной единицей доступа является лексема (имя словарной статьи): нужно прочесть всю статью, чтобы определить, содержится ли в ней ответ ...

Скачать
57761
0
0

... Маркса и до него, но это его мало интересовало, поскольку из этого широкого плана выпадает тема классовой борьбы и тема взаимоотношения труда (живого) и капитала в трактовке Маркса. Машины - важнейший фактор социального прогресса. Работы Маркса о них в "Экономических рукописях" (первый вариант “Капитала”) написаны в 1857-1859 годах, а первый том "Капитала" в последнем варианте вышел в 1872 году. ...

Скачать
70193
0
0

... с “мозолистыми руками”. Но в действительности под этим символом скрывается любая производительная сила, любой субъект труда, способный заменить человека в его труде. Это может быть и раб, и вол, и машина. Учение Маркса о прибавочной стоимости безусловно верно в своем главном утверждении - прибавочная стоимость создается абстрактным трудом. И это утверждение представляет собой большой вклад в ...

Скачать
64295
0
0

... структуры. PROSPECTOR — экспертная система, созданная для содействия поиску коммерчески оправданных месторождений полезных ископаемых.   2. Перспективы и тенденции развития AI Сообщения об уникальных достижениях специалистов в области искусственного интеллекта (ИИ), суливших невиданные возможности, пропали со страниц научно-популярных изданий много лет назад. Эйфория, связанная с первыми ...

0 комментариев


Наверх