1.7 Оценка погрешности и сходимость методов Рунге-Кутты

Со времен работы Лагранжа и особенно Коши всякий установленный численно результат принято сопровождать надежной оценкой погрешности. Лагранж дал известные оценки погрешности многочленов Тейлора, а Коши вывел оценки для погрешности метода ломаных Эйлера. Через несколько лет после первых успехов методов Рунге-Кутты также пришел к заключению, что для этих методов нужны оценки погрешностей[2].

1.7.1 Строгие оценки погрешности

Способ, которым Рунге получил оценку погрешности, делаемой на одном шаге («локальной погрешности»), может быть описан следующим образом. Для метода порядка  рассмотрим локальную погрешность

 (2.7.1)

и воспользуемся ее тейлоровским разложением:

, (2.7.2)


где  и . Явное вычисление  дает выражение вида

, (2.7.3)

где  и  содержат частные производные  до порядков  и  соответственно. Далее поскольку , имеем . Таким образом, если ограничены все частные производные  до порядка  включительно, имеем  и . Следовательно, существует постоянная  такая, что  и

. (2.7.4)

Бибербах использовал несколько иной подход. Запишем

 (2.7.5)

и воспользуемся тейлоровскими разложениями

 (2.7.6)

Для векторных функций эти формулы справедливы покомпонентно (возможно, с различным ). В силу условий порядка первые члены разложения (2.6.5) по степеням  обращаются в нуль. Таким образом, справедлива следующая теорема.

Теорема.

Если метод Рунге-Кутты (2.3.1) имеет порядок  и если все частные производные  до порядка  включительно существуют и непрерывны, то локальная погрешность метода (2.3.1) допускает следующую строгую оценку:

, (2.7.7)

или

. (2.7.8)

Продемонстрируем этот результат, применяя к скалярному дифференциальному уравнению первый метод Рунге-Кутты (2.2.4), который имеет порядок . Дифференцируя (2.1.1), получим

. (2.7.9)

Вторая производная величины  имеет вид

 

Если условия теоремы выполнены, то легко видеть, что выражения (2.7.9) и (2.7.10) ограничены постоянной, которая не зависит от , что и дает оценку (2.7.8).



Информация о работе «Метод Рунге-Кутты четвертого порядка с автоматическим выбором шага интегрирования решения задачи Коши»
Раздел: Математика
Количество знаков с пробелами: 39910
Количество таблиц: 10
Количество изображений: 20

Похожие работы

Скачать
38479
9
12

... 1 0.0001 Графики решения приведены на Рисунке 8, а численные значения в таблице 8. Рисунок показывает, что выходное напряжение автогенератора (кривая 1) достаточно близко к синусоидальному, чего нельзя сказать о входном напряжении усилителя (кривая 2). Таблица 8 АРГУМЕНТ ФУНКЦИЯ 1 ФУНКЦИЯ 2 ФУНКЦИЯ 3 ФУНКЦИЯ 4 ФУНКЦИЯ 5 370.0 ...

Скачать
53746
0
28

... с единицами измерений физических величин в системе MathCAD? 11.    Подробно охарактеризуйте текстовые, графические и математические блоки. Лекция №2. Задачи линейной алгебры и решение дифференциальных уравнений в среде MathCAD В задачах линейной алгебры практически всегда возникает необходимость выполнять различные операции с матрицами. Панель операторов с матрицами находится на панели Math. ...

Скачать
34983
6
8

... методы (метод Гаусса). Однако, при решении на ЭВМ систем высокого порядка (более 200 уравнений в системе), предпочтительными являются итерационные методы. Реализация решения задачи анализа линейного стационарного объекта может быть осуществлена с помощью средств матричной алгебры пакета MathCAD. 1.2. Последовательность выполнения работы   1. Согласно номеру варианта (две последние цифры ...

0 комментариев


Наверх