3 Парабола

 

Параболой называется множество точек плоскости, равноудаленных от данной точки F этой плоскости, называемой фокусом параболы, и данной прямой, называемой ее директрисой.

Построим уравнение параболы.

Пусть ось Оx проходит через фокус F параболы и перпендикулярен директрисе, а ось Оу проходит посередине между фокусом и директрисой. Обозначим через p – расстояние между фокусом и директрисой. Тогда , а уравнение директрисы .

Число p – называется фокальным параметром параболы.

Пусть  – произвольная точка параболы. Пусть  – фокальный радиус точки M. d – расстояние от точки М до директрисы. Тогда  

По определению параболы . Следовательно

Возведем это уравнение в квадрат

Подпись:

Подпись: (20)

– каноническое уравнение параболы, симметричной относительно оси Оx и проходящей через начало координат.

Точка (0; 0) – вершина параболы.

Если р > 0 (р > 0 ), то парабола (20) расположена правее (левее) оси Оу.

Так как для параболы , а для эллипса и гиперболы , то, следовательно, эксцентриситет параболы равен 1 (e = 1).

Заметим, что парабола, симметричная относительно Оу и проходящая через начало координат, определяется уравнением

х2 = 2q y (21)

Фокус этой параболы находится в точке . Уравнение ее директрисы . Фокальный радиус ее точки М(х, у) выражается формулой .

Если q > 0 (q < 0), то ветви параболы (21) расположены выше (ниже) оси Ох.

Рассмотрим примеры.

ПРИМЕР 1

Найти координаты центра и радиус окружности, определяемой уравнением

х2 + у2 – 4х + 6у – 3 = 0.

Решение.

Выделим полные квадраты в данном уравнении:

х2 + у2 – 4х + 6у – 3 = (х2 – 4х + 4) – 4 + (у2 + 6у + 9) – 9 – 3 = 0

Þ (х – 2)2 + (у + 3)2 = 16.

Учитывая уравнение окружности (1), имеем, что ее центр находится в точке с координатами (2; –3), а радиус равен 4.

ПРИМЕР 2

Эллипс, симметричный относительно осей координат, фокусы которого находятся на оси Ох, проходит через точку М(–4; ) и имеет эксцентриситет . Написать уравнение эллипса и найти фокальные радиусы точки М.

Решение.

Каноническое уравнение эллипса имеет вид

Так как эллипс проходит через точку М, то ее координаты должны удовлетворять этому уравнению

Фокусы находятся на оси Ох, следовательно

Объединив полученные два уравнения в систему, найдем а2 и в2:

Следовательно, уравнение данного эллипса имеет вид:

Фокальные радиусы точки М определим по формулам (8): х = –4, , .

Þ r1 = а + eх = = 8 – 3 = 5,

r2 = а – eх = = 8 + 3 = 11.

ПРИМЕР 3

Определить траекторию точки М, которая при своем движении остается вдвое ближе к точке F (–1; 0), чем к прямой х = –4.

Решение.

Пусть М (х, у). Тогда çMNú = 2 çMFú, çMNú = ç–4 – xú, çMFú= = , Þ ç– (4 + х)ú = .

Возведем в квадрат: (4 + х)2 = 4 ((х + 1)2 + у2),

Þ     16 + 8х + х2 = (х2 + 2х + 1 + у2) · 4 = 4х2 + 8х + 4 + 4у2,

Þ     3х2 + 4у2 = 12 Þ  Þ .

Таким образом, точка М (х, у) движется по эллипсу.


ПРИМЕР 4

Написать уравнение гиперболы, имеющей вершины в фокусах, а фокусы – в вершинах эллипса .

Решение.

Из уравнения данного эллипса имеем: а = 5; в = 3, а > в.

Следовательно,  Поэтому, вершинами эллипса будут точки (±5; 0), (0; ±3), а фокусами точки F1(–с; 0) = (–4; 0), F2(4; 0).

Так как фокусы эллипса находятся на оси Ох (а > в), то вершины (±5; 0) будут фокусами гиперболы. Каноническое уравнение гиперболы, имеющей фокусы на оси Ох, имеет вид (13)

,

причем F1(–5; 0), F2(5; 0) – фокусы данной гиперболы, т. е. с1 = 5. Найдем а1 и в1.

Так как вершины данной гиперболы находятся в фокусах эллипса, то а1 = с = 4. Следовательно:

.

Таким образом, уравнение гиперболы имеет вид


ПРИМЕР 5

Составить уравнение геометрического места точек, одинаково удаленных от точки F(2; 0) и от прямой у = 2. Найти вершину параболы, точки пересечения ее с осью Ох.

Решение.

Пусть точка М (х, у) – принадлежит данному множеству точек.

Следовательно çFMú = çNMú , çFMú == , çNMú = 2 – у, Þ 2 – у = .

Возведем в квадрат:

– парабола, ветви которой направлены вниз.

Найдем точки пересечения данной параболы с осью Ох.

у = 0 Þ  Þ  Þ х1 = 0; х2 = 4.

Т. е. это будут точки (0; 0); (4; 0).

Þ Вершина параболы будет в точке с абсциссой х = 2 Þ = = 2 – 1 = 1, т. е.

Вершиной параболы будет точка (2; 1).

ПРИМЕР 6

На параболе у2 = 6х найти точку, фокальный радиус которой равен 4,5.

Решение.

Так как у2 = 2рх Þ 2р = 6, р = 3.  Þ  = =  Значит у2 = 6 · 3 = 18 Þ у = ± = ±. Þ (3; ±) – две таких точки.


ЛИТЕРАТУРА

1. Гусак А. А. Аналитическая геометрия и линейная алгебра.– Мн.: Тетрасистемс, 1998.

2. Овсеец М. И., Светлая Е. М. Сборник задач по высшей математике. Учебное издание.– Мн.: ЧИУиП, 2006.– 67 с.


Информация о работе «Кривые второго порядка»
Раздел: Математика
Количество знаков с пробелами: 9787
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
7286
1
4

... Гипербола Две пересекающиеся прямые Гипербола II. Переход от общего уравнения кривой к каноническому Рассмотрим теперь случай, когда, и исследуем данное уравнение кривой второго порядка с помощью инвариантов. Из вышеприведенной таблицы видим, что при  уравнение (1) определяет гиперболу и принимает вид: (2.1) Приведем уравнение кривой (2.1) к каноническому виду, ...

Скачать
26102
3
13

... третьего порядка. Яблонский А.И. [11, с.1752 - 1760] и Филипцов В.Ф. [9, с.469-476] изучали квадратичные системы с предположением, что частным интегралом являлись алгебраические кривые четвертого порядка. В данной работе рассматривается система  (0.3) и проводится качественное исследование в целом системы (0.3) при условии, что частным интегралом является кривая четвертого порядка, которая ...

Скачать
4881
0
4

... форма j(х) = хТАх была отрицательно определенной, необходимо и достаточно, чтобы ее главные миноры четного порядка были положительны, а нечетного – отрицательны, то есть: М1 < 0, M2 > 0, М3 < 0, …, (–1)n Mn > 0. Пример 3. При каких значениях а и в квадратичная форма будет положительно определенной? j (х1, х2, x3) = Решение. Построим матрицу А и найдем ее главные миноры. ...

Скачать
8551
1
4

... кривой второго порядка и приведя его к каноническому виду, мы установили, что данная кривая — эллипс. Мы получили каноническое уравнение гиперболы при помощи преобразований параллельного переноса и поворота координатных осей. Исследование формы поверхности второго порядка   Теоретическая часть   Поверхностью второго порядка S называется геометрическое место точек, декартовы прямоугольные ...

0 комментариев


Наверх