1.1.2. Кривые термовысвечивания

Как было сказано ранее, длительность послесвечения люминофора связана с пребыванием электронов на ловушках. Поэтому она зависит от числа ловушек, их глубины и от числа электронов, находящихся на ловушках. Исследовать свойства электронных ловушек можно методом кривых термического высвечивания [12], который заключается в следующем. Люминофор охлаждают до температуры жидкого азота или жидкого гелия и при этой температуре возбуждают светом. При этом электроны, попавшие в процессе возбужде­ния на ловушки, локализуются на них. Затем источник возбуждения выключают и начинают нагревать люминофор с определенной постоянной скоростью β.

При некоторых значениях температуры наблюдается резкое увеличение интенсивности люминесценции. Это происходит тогда, когда люминофору сообщается энергия, достаточная для того, чтобы освободить электроны с ловушек определённой глубины. Освобожденные термическим путем электроны рекомбинируют с центрами люминесценции, что приводит к вспышке люминесценции при данной температуре. Таким образом, на кривых зависимости интенсивности свечения от температуры (кривых термовысвечивания) появляется ряд максимумов. Зная температуру, при которой наблюдается максимум вспышки, можно определить энергетическую глубину ловушки. Согласно теории Рэндалла и Уилкинса, значение энергии Е (глубину ловушки) можно вычислить по формуле:

β=E/kT2=Se-E/kT

где S - некоторый параметр, связанный с природой люминофора (определяется экспериментально).

Численные расчеты [1], позволяют выразить связь между Е и Т для скорости нагревания 0,01 град/сек соотношением Е=400/Т. Из теории кривых термовысвечивания следует, что площадь, ограниченная кривой термовысвечивания и осью абсцисс, пропорциональна числу электронов, запасенных на ловушках.

 В литературе для люминофоров одного и того же состава приводятся кривые термовысвечивания с различным числом и положением максимумов. Как показано в работе [13], на форму кривых термовысвечивания сильно влияют чистота исходных препаратов и способ приготовления люминофоров. Кроме того, форма кривых термовысвечивания зависит от условий проведения опыта: от скорости нагревания, длительности возбуждения люминофора в замороженном состоянии, промежутка времени между прекращением возбуждения иначалом нагревания люминофора, интенсивности возбуждающего света.

В работе Левшина и др. [14] показано, что максимумы на кривых термовысвечивания у люминофоров ZnS:Сu обусловлены введением активатора. Такой же точки зрения придерживаются Бундель и Жуков [15], которые наблюдали появле­ние в спектре люминесценции сульфида цинка, активированного молекулярным кислородом, полосы излучения, расположенной около 508 нм, при этом одновременно на кривых термовысвечивания появлялся максимум около 213° К. Между интенсивностью свечения в полосе излучения этого активатора и величиной пика на кривой термовысвечивания существует прямая зависимость.

Другой точки зрения придерживается Хугенстраатен [16], который считает, что появление дополнительных максимумов на кривых термовысвечивания связано с введением не активатора, а коактиваторов: Се, Sс, А1, Gа, In.

ЭЛЕКТРОЛЮМИНЕСЦЕНЦИЯ

 

В отличие от фотолюминофоров, представляющих собой однофазную систему, люминофоры, возбуждаемые электрическим полем представляют собой двухфазную систему, образованную сульфидом цинка ZnS n-типа проводимости (основа) и сульфидом меди CuxS p-типа проводимости.

Электролюминофорами называются вещества, светящиеся при возбуждении электрическим полем. Принято разделять все явления электролюмннесценции на два класса: относящиеся к эффекту Лосева и относящиеся к эффекту Дестрио. В первом случае кристаллы электролюминофора непосредственно соприкасаются с электродами, и таким образом носители заряда могут непосредственно проникать в кристаллы. Впервые такого рода свечение твердых веществ в электрическом поле наблюдал в 1923 г. Лосев на карбиде кремния, который использовался в качестве кристаллического детектора, причем люминесценция наблюдалась всегда непосредственно, вблизи контактов. Второй вид электролюминесценции – электролюминесценцию порошкообразных фосфоров, которым посвящена данная глава, наблюдал впервые в 1936 г. Дестрио. Это явление по целому ряду свойств отличается от свечения карбида кремния. Вещества, которым оно свойственно, имеют горазд> большее удельное сопротивление, чем карбид кремния, причем свечение может происходить и в том случае, когда люминофор помещен в диэлектрик. При этом свечение, как правило, можно получить только при возбуждении люминофоров переменным электрическим полeм. Первое объяснение явлений электролюминесценции было предложено Дестрио [17], который предположил, что центры люминесценции могут возбуждаться благодаря соударениям с электронами, ускоряемыми полем. Теория этого явления была подробно развита Кюри [18], но она не могла объяснить, почему явления электролюминесценции имеют место уже при сравнительно небольших напряженностях поля (порядка десятков киловольт на 1 см). В работах Пайпера и Вильямса [19] предполагается, что ударная ионизация центров люминесценции происходит около барьера обеднения вблизи отрицательного электрода, где обеспечвается большая величина напряженности поля, необходимая для этого процесса. Электроны, участвующие в процессе ударной ионизации, освобождаются полем с уровней захвата.

Эта теория рассматривает явления, происходящие в монокристаллах. Для объяснения процессов, происходящих в порошкообразных люминофорах, помещенных в диэлектрик, Залм [20] предположил, что источником злектронов является поверхностный слой Сu2S, покрывающий кристаллы электролюминофоров. При возбуждении электрическим полем электроны переходят из Cu2S к положительному концу кристалла и при соударении с центрами люминесценции ионизуют их. При этом часть электронов может отгоняться полем из области ионизации и захватываться на ловушках. Выключение поля или перемена знака приводит к возврату электронов и рекомбинации их с центрами люминесценции, в результате чего происходит излучение. В работах [21, 22] механизм электролюминесценции связывается с процессом туннельного проникновения электронов при ионизации полем, которое осуществляется из фазы Cu2S, находящейся на поверхности кристаллов. Торнтон [23] высказал предположение, что электролюминесценция в сульфидных злектролюминофорах обусловлена инжекцией неосновных носителей, а не ускорением и соударениями с центрами люминесценции основных носителей. Дальнейшие исследования, связанные с наблюдением свечения кристаллов электролюминофоров под микроскопом, по-видимому, подтверждают точку зрения Торнтона. Как следует из ряда работ, в которых исследовалось свечение отдельных кристаллов под микроскопом [24, 25], свечение сосредоточено в отдельных пятнах, точках или светящихся линиях.

Джилсон и Дарнелл [24] предполагают, что светящиеся линии, которые видны под микроскопом, связаны с особыми линейными дефектами в кристаллах ZnS. Так как свечение по длине линии неравномерно, ярче всего светится «голова» линии, то можно предположить, что начало линии находится в плоскости р-n-перехода. Механизм электролюминесценции, согласно представлениям авторов, определяется двумя стадиями. На первой стадии, или стадии активации, положительное напряжение приложено к n-области, а отрицательное - к р-области. Это приводит к тому, что электроны и дырки начинают двигаться из области р-n-перехода. Вторая стадия начинается тогда, когда знак напряжения изменяется и дырки инжектируются в n-область. Здесь они захватываются на линейных дефектах и переносятся к центрам люминесценции. При рекомбинации электронов с дырками происходит излучение.

В работе Фишера [26] также рассматривается возможное объяснение явлений электролюминесценции инжекцией носителей. Используя представления Лемана и Маэда, Фишер предполагает, что проводящие включения в кристалле ZnS имеют линейчатую иглообразную форму и основные явления разыгрываются около этих включений. При этом он вводит представление о биполярной. инжекции носителей тока. Сущность этих представлений заключается в следующем. При приложении поля определенной полярности из одного конца проводящего включения выходят в объем кристалла ZnS дырки, а из противоположного - электроны. Дырки захватываются центрами люминесценции, а электроны - ловушками. При изменении полярности знаки носителей, выходящих из концов проводящих включений, меняются. Конец, из которого выходили дырки, при изменении знака поля будет поставлять электроны, которые могут рекомбинировать с дырками, нахо­дящимися на центрах люминесценции. На основе этой модели объясняются основные явления электролюминесценции: зависимость яркости свечения от напряжения, величина светоотдачи, стабильность и изменение цвета свечения электролюминофора при повышении частоты возбуждающего поля.


Информация о работе «Исследование влияния частоты переменного электрического поля на яркость люминесценции различных люминофоров»
Раздел: Физика
Количество знаков с пробелами: 67423
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
26449
2
17

... и возможность работы при низких температурах. Существует много конструкций ГИП переменного тока, одна из них приведена на рисунке (рис. 2.1). В основу ГИП переменного тока положена трехэлектродная структура газоразрядной ячейки. Рис. 2.1 Два так называемых дисплейных электрода (ионизирующий и развертки) - полупрозрачные, они нанесены на поверхность внешнего стекла, ...

Скачать
56639
3
6

... . Это дает возможность элементного анализа вещества: определение количества атомов каждого элемента, входящего в состав образца. ГЛАВА 2. ОБЛАСТИ ПРИМЕНЕНИЯ ФЛУОМЕТРИИ В АНАЛИЗЕ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ Сегодня люминесцентный метод анализа охватывает широкий круг методов определения разнообразных объектов от простых ионов и молекул до высокомолекулярных соединений и биологических объектов. ...

Скачать
35272
1
10

... . Развитие способов передачи изображений и измерительной техники сопровождалось дальнейшей разработкой и усовершенствованием различных электровакуумных приборов, радиоламп и электронографических приборов для осциллографов, радиолокации и телевидения. Рентгеновская трубка Электрический ток в вакууме применяют для получения рентгеновских лучей. Рентгеновские лучи испускаются любым веществом, ...

Скачать
60330
12
39

... 4 Содержание отчета Схема включения однофазного счетчика в сеть. Схема включения трехфазного счетчика (п.7). Таблица с результатами измеренных и вычисленных значений. 3. Выводы о результатах поверки счетчика. Контрольные вопросы. 1. Единицы измерения электрической энергии. 2. Основные части счетчика и их назначение. 3. Принцип работы индукционного ...

0 комментариев


Наверх