«Флуометрия в анализе объектов окружающей среды»


ОГЛАВЛЕНИЕ

ВВЕДЕНИЕ

ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФЛУОМЕТРИИ (ЛЮМИНЕСЦЕНЦИИ)

ГЛАВА 2. ОБЛАСТИ ПРИМЕНЕНИЯ ФЛУОМЕТРИИ В АНАЛИЗЕ ОБЪЕКТОВ ОКРУЖАЮЩЕЙ СРЕДЫ

ГЛАВА 3. СОВРЕМЕННОЕ ОБОРУДОВАНИЕ

ЛИТЕРАТУРА


ВВЕДЕНИЕ

Люминесцентный анализ обладает рядом особенностей, которые отличают его от всех других видов анализа. Люминесцентный анализ необычайно чувствителен. С его помощью можно обнаружить в пробе присутствие вещества с концентрацией ~10-10 – 10-11 г/г. Это более чем на три порядка превосходит чувствительность эмиссионного спектрального анализа, что позволяет работать с исчезающе малыми количествами исследуемого вещества ~10-12 – 10-15 г. С помощью люминесцентного анализа можно исследовать очень небольшие объемы раствора, а также анализировать мельчайшие крупинки порошков, в которых содержатся следы других люминесцирующих веществ.

Важным преимуществом люминесцентного анализа являются его простота и скорость, во много раз превосходящие скорость химического анализа.


ГЛАВА 1. ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ФЛУОМЕТРИИ (ЛЮМИНЕСЦЕНЦИИ)

Флуометрия (люминесценция) является одним из широко распространенных в природе видов излучения. Помимо люминесценции известны и другие свечения, которые, однако, существенно отличаются от нее, например, температурное излучение, свечения, наблюдаемые при быстром движении электрических зарядов (тормозное излучение, Свечение Вавилова — Черенкова) и т. п.

Люминесценцией называют избыток излучения над температурным при условии, что избыточное излучение обладает конечной длительностью, превышающей период световых колебаний (~ 10-10 сек).

Это определение основано на противопоставлении люминесценции температурному излучению, свойства которого хорошо известны. Вместе с тем оно указывает на наличие у люминесценции конечной длительности послесвечения, превышающей период световых колебаний. Это условие позволяет отличать люминесценцию от отражения, рассеяния и излучения Вавилова-Черенкова, которые являются практически безынерционными.

Очень многие вещества обладают способностью люминесцировать. При этом они могут находиться в газообразном, жидком и твердом состояниях. Простейшими из них являются газы и пары различных элементов (О2, I2, Na2 и т. д.). Люминесцентными свойствами обладают соли некоторых веществ (редкоземельных элементов, ураниловых соединений), ароматические соединения (нафталин, бензол, антрацен, и производные и др.), растворы ряда красителей, а также многие другие вещества. Особый класс люминесцирующих соединений составляют так называемые кристаллофосфоры — неорганические вещества (например. ZnS, CaS и др.), в кристаллическую решетку которых введены ионы тяжелых металлов (например, Ag, Cu, Mn и др.).

Для того чтобы вещество начало люминесцировать, к нему необходимо извне подвести определенное количество энергии. Тогда его частицы переходят в новое, более богатое энергией, возбужденное состояние, в котором они пребывают определенное время, после чего вновь возвращаются в невозбужденное состояние, отдавая при этом часть энергии возбуждения в виде квантов люминесценции.

Энергия возбуждения может быть подведена к веществу различными способами. В зависимости от метода возбуждения возникающее свечение получает различные названия. Так, при возбуждении свечения оптическими частотами оно носит название фотолюминесценции; свечение, возникающее под действием катодных лучей, называется катодолюминесценцией; при возбуждении веществ рентгеновыми лучами возникает рентгенолюминесценция; при облучении их лучами радиоактивных элементов наблюдается радиолюминесценция; свечение, появляющееся при химических реакциях, получило название хемилюминесценции; свечение, возникающее под действием электрического поля, называется электролюминесценцией. Люминесценция может быть получена и с помощью других источников возбуждения.

Распределение молекул по колебательным уровням как невозбужденного, так и возбужденного электронного состояния описывается формулой Больцмана:

 (1)

где N0 — полное число всех молекул; Ni — число молекул на уровне i; Еi — значение колебательной энергии, соответствующее уровню i. Если при некоторой температуре Ei >> kT, то в соответствии с формулой (1) подавляющая часть молекул должна находиться на нулевом колебательном уровне. Для комнатной температуры это условие обычно выполняется, что позволяет считать, что в этом случае практически все молекулы находятся на нулевом уровне. Таким образом, по мере роста номера уровня число находящихся на нем молекул быстро убывает.

Оптические свойства люминесцирующих веществ описываются с помощью целого ряда характеристик. Сюда относятся спектры поглощения и люминесценции, поляризация свечения (и поляризационные спектры), выход люминесценции, длительность возбужденного состояния молекул, закон затухания свечения и кривые термического высвечивания.


Информация о работе «Флуометрия в анализе объектов окружающей среды»
Раздел: Экология
Количество знаков с пробелами: 56639
Количество таблиц: 3
Количество изображений: 6

0 комментариев


Наверх