11 Системная шина, режимы работы системной шины, программируемые системные устройства

Шины – наборы проводников, по которым происходит обмен сигналами между внутренними устройствами компьютера;

Системная шина - предназначена для передачи информации между процессором и остальными электронными компонентами компьютера. По системной шине осуществляется адресация устройств и происходит обмен специальными служебными сигналами. Упрощенно системную шину можно представить как совокупность сигнальных линий, объединенных но назначению (данные, адреса, управление).Системная шина представляет собой набор проводников электрических сигналов и систему протоколов соединения устройств при помощи этих проводников. Тип и характеристики протоколов передачи информации по системной шине определяют скорость передачи информации между отдельными устройствами материнской платы. Системные шины персональных компьютеров стандартизируются как по числу контактов и разрядности (числу проводников, используемых для одновременной передачи данных), так и по протоколам общения устройств через проводники. Системная шина соединяет все устройства компьютера в единое целое и обеспечивает их взаимодействие, взаимоуправление и работу с центральным процессором. В персональных компьютерах используются системные шины стандартов ISA, EISA, VLB и PSI. В наше время теперь используют только шину PCI, конечно еще можно встретить ISA, но она слишком медленная в сравнении с PCI, поэтому её больше не выпускаю.

 

18 Видеосистема ЭВМ. Принципы работы. Области применения

Видеокарта (видеоадаптер) Совместно с монитором видеокарта образует видеоподсистему персонального компьютера. Видеокарта не всегда была компонентом ПК. На заре развития персональной вычислительной техники в общей области оперативной памяти существовала небольшая выделенная экранная область памяти, в которую процессор заносил данные об изображении. Специальный контроллер экрана считывал данные об яркости отдельных точек экрана из ячеек памяти этой области и в соответствии с ними управлял разверткой горизонтального луча электронной пушки монитора. С переходом от черно-белых мониторов к цветным и с увеличением разрешения экрана (количества точек по вертикали и горизонтали) области видеопамяти стало недостаточно для хранения графических данных, а процессор перестал справляться с построением и обновлением изображения. Тогда и произошло выделение всех операций, связанных с управлением экраном, в отдельный блок, получивший название видеоадаптер. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видеокартой. Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора и видеопамяти. За время существования персональных компьютеров сменилось несколько стандартов видеоадаптеров: МDA (монохромный); СGA (4 цвета); ЕGA (16 цветов);VGА (256 цветов). В настоящее время применяются видеоадаптеры SVGА, обеспечивающие по выбору воспроизведение до 16,7 миллионов цветов с возможностью произвольного выбора разрешения экрана из стандартного ряда значений (640x480, 800x600,1024x768, 1152x864; 1280x1024 точек и далее). Разрешение экрана является одним из важнейших параметров видеоподсистемы. Чем оно выше, тем больше информации можно отобразить на экране, но тем меньше размер каждой отдельной точки и, тем самым, тем меньше видимый размер элементов изображения. Использование завышенного разрешения на мониторе малого размера приводит к тому, что элементы изображения становятся неразборчивыми и работа с документами и программами вызывает утомление органов зрения. Использование заниженного разрешения приводит к тому, что элементы изображения становятся крупными, но на экране их располагается очень мало. Если программа имеет сложную систему управления и большое число экранных элементов, они не полностью помещаются на экране. Это приводит к снижению производительности труда и неэффективной работе. Цветовое разрешение (глубина цвета) определяет количество различных оттенков, которые может принимать отдельная точка экрана. Максимально возможное цветовое разрешение зависит от свойств видеоадаптера и, в первую очередь, от количества установленной на нем видеопамяти. Кроме того, оно зависит и от установленного разрешения экрана. При высоком разрешении экрана на каждую точку изображения приходится отводить меньше места в видеопамяти, так что информация о цветах вынужденно оказывается более ограниченной. Минимальное требование по глубине цвета на сегодняшний день- 256 цветов хотя большинство программ требуют не менее 65 тыс. цветов (режим High Coloг) Наиболее комфортная работа достигается при глубине цвета 16,7 млн. цветов (резких Тruе Соlоr). Работа в полно цветном режиме Тruе Со1оr с высоким экранным разрешением требует значительных размеров видеопамяти. Современные видеоадаптеры способны также выполнять функции обработки изображения, снижая нагрузку на центральный процессор ценой дополнительных затрат видеопамяти. Еще недавно типовым считались видеоадаптеры с объемом памяти 2-4 Мбайт, но уже сегодня обычным считается объем 16 Мбайт. Видеоускорение - одно из свойств видеоадаптера, которое заключается в том, что часть операций по построению изображений может происходить без выполнена математических вычислений в основном процессоре компьютера, а чисто аппаратным путем - преобразованием данных в микросхемах видеоускорителя. Видеоускорители могут входить в состав видеоадаптера (в таких случаях говорят о том, что видео карта обладает функциями аппаратного ускорения), но могут поставляться в виде отдельной платы, устанавливаемой на материнской плате и подключаемого к видеоадаптеру. Различают два типа видео ускорителей - ускорители плоской (2D) и трехмерной (3D) графики. Первые наиболее эффективны для работы с прикладными программами (обычно офисного применения) и оптимизированы для операционной системы Windows, а вторые ориентированы на работу мультимедийных развлекательных программ, в первую очередь компьютерных игр и профессиональных программ обработки трехмерной графики. Обычно в этих случаях используют разные математические принципы автоматизации графических операций, но существуют ускорители, обладающие функциями и двумерного, и трехмерного ускорения.


Информация о работе «Архитектуре ЭВМ»
Раздел: Информатика, программирование
Количество знаков с пробелами: 53041
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
34560
0
2

... неотъемлемой частью (хотя впервые дисплей был реализован на некоторых ЭВМ второго поколения, например, на «МИР-2» - очень интересной во многих отношениях отечественной разработке). Рисунок 3.1 - Шинная архитектура ЭВМ Для получения на экране монитора стабильной картинки ее надо где-то хранить. Для этого и существует видеопамять. Сначала содержимое видеопамяти формируется компьютером, а ...

Скачать
25469
0
2

... это делать. Буфера адресов позволяют в конечном итоге сгладить неравномерность поступления запросов к памяти и тем самым повысить эффективность ее использования. Третьей структурной особенностью БЭСМ-6 является метод использования сверхоперативной, неадресуемой из программы памяти небольшого объема, цель которого≈автоматическая экономия обращений к основному оперативному запоминающему ...

Скачать
7278
5
1

... процессоры, входящие в состав периферийных устройств). В многомашинной вычислительной системе несколько процессоров, входящих в вычислительную систему, не имеет общей оперативной памяти, а имеют каждый свою (локальную). Каждый компьютер в многомашинной системе имеет классическую архитектуру, и такая система применяется достаточно широко. Однако эффект от применения такой вычислительной системы ...

Скачать
31507
0
2

... пользователя. С помощью клавиатуры управляют компьютерной системой, а с помощью монитора получают от нее оклик. Принцип действия. Клавиатура относится к стандартным средствам персонального компьютера. Ее основные функции не нуждаются в поддержке специальными системными программами (драйверами). Необходимое программное обеспечения для начала работы с компьютером уже имеется в микросхеме ПЗУ в ...

0 комментариев


Наверх