1. ЗАСТОСУВАННЯ ЗАКОНУ БІО-САВАРА-ЛАПЛАСА ДЛЯ ОБЧИСЛЕННЯ ІНДУКЦІЇ МАГНІТНОГО ПОЛЯ ПРОВІДНИКІВ З СТРУМОМ

1.         Поле прямого лінійного провідника з струмом.

Обчислимо індукцію магнітного поля в точці А, розміщеній а відстані  від нескінчено довгого лінійного провідника з струмом І (рис. 1).

Рис. 1

Для цього поділимо провідник на нескінченно малі елементи dl і запишемо закон Біо-Савара-Лапласа:

.

Враховуючи, що для заданого напрямку струму I всі елементарні значення індукції магнітного поля в точці А направлені в один бік по прямій, перпендикулярній до площини рисунка, результуюча індукція магнітного поля рівна:

. ( 1 )


В цьому виразі три змінних (rla) до однієї змінної. З рис.1 маємо:

; .

Підставимо значення  і  у формулу (1)

,

Отже , а після інтегрування

 ( 2 )

Для провідника скінченої довжини індукція магнітного поля залежить від  і  (рис.2). Для нескінченного провідника із струмом , тому

 ( 3 )

Рис. 2


Таким чином: індукція магнітного поля нескінченно довгого лінійного провідника із струмом прямопропорційна силі струму і обернено пропорційна відстані  точки від провідника.

2.         Поле в центрі лінійного колового провідника радіуса  по якому проходить струм силою І.

В цьому випадку (рис.3) елементарні значення індукції , кожного елемента  в точці 0 будуть направлені в один бік (від нас за площину рисунку) тоді

.

Рис.3

Для довільного елемента dl колового провідника

; ; .

Тоді

.


Отже

 ( 4 )

Отже: індукція магнітного поля колового провідника прямопропорційна силі струму і оберненопропорційна радіусові провідника.

Якщо коловий провідник має N витків і котушка плоска, то

 ( 5 )

або ;

 

NI - величина, що дорівнює добутку кількості витків катушки на силу струму в них називається числом ампервитків.

Більш складні розрахунки показують, що напруженість магнітного поля в точці на осі колового провідника радіусом R на відстані d від центра колового провідника дорівнює:

.

Аналогічно обчислюється індукція магнітного поля, створена іншими провідниками з струмом.

2. ЗАКОН ПОВНОГО СТРУМУ ТА ЙОГО ВИКОРИСТАННЯ ДЛЯ РОЗРАХУНКУ МАГНІТНИХ ПОЛІВ. ВИХРОВИЙ ХАРАКТЕР МАГНІТНОГО ПОЛЯ

У електростатиці було встановлено, що робота при переміщенні одиничного пробного заряду в електричному полі не залежить від форми шлязу і по довільному замкненому контуру дорівнює нулю. Такі поля називають потенціальними. Математична умова потенціальності поля записується у вигляді рівності нулю циркуляції вектора , . Ця умова вказує на те, що силові лінії електростатичного поля незамкнені: починаються на позитивних зарядах і закінчуються на негативних, або прямують у нескінченість.

Виникає запитання, а який характер має магнітне поле? Чи потенціально воно? Щоб відповісти на це обчислимо циркуляцію вектора індукції магнітного поля -?

Хай магнітне поле створюється нескінченно довгим провідником із струмом І (рис.4- переріз провідника, перпендикулярного площині рисунка).

Рис. 4

Для спрощення розрахунків розглянемо найбільш простий випадок: за контур інтегрування So оберемо концентричне коло радіуса ro. Тоді

.

Так як у всих точках кола кут між  і  дорівнює нулю, то .

а . Отже , а . Тому

 ( 6 )

Якщо взяти будь-який контур S , то ускладняться обчислення, а результат буде таким же (6).

Якщо контур охоплює декілька провідників із струмами, то циркуляція вектора індукції магнітного поля визначається алгебраїчною сумою струмів охоплених контуром. За принципом суперпозиції , отже

 ( 7 )

При цьому позитивним вважається такий струм напрям якого зв’язаний з напрямком обходу контура правилом правого гвинта, а струм протилежний напрямку вважається негативним. Наприклад, для випадку, показаному на рис.5 маємо:

Рис. 5

На практиці в розрахунках магнітних кіл часто користуються циркуляцією вектора напруженості магнітного поля . Оскільки для вакууму , то


 ( 8 )

Закон, який виражається рівностями (7) або (8) називають законом повного струму. Він справедливий для довільних струмів і формулюється так: циркуляція вектора напруженості магнітного поля постійних струмів по довільному замкненому контуру дорівнює алгебраїчній сумі струмів, які охоплюються цим контуром.

Отже, робота при перенесенні пробного одиничного елемента струму  в магнітному полі в загальному випадку не дорівнює нулю.

Такі поля називаються не потенціальними, або вихровими, їх не можна характеризувати потенціалом. Силові лінії магнітного поля не мають ні початку ні кінця, тобто вони завжди замкнені або прямують у нескінченність. В цьому полягає одна із відмінностей магнітного поля порівняно з електричним.

Закон повного струму має для розрахунків магнітних полів постійного струму таке ж важливе значення, як теорема Остроградського-Гаусса для розрахунку електростатичних полів.

Розглянемо використання закону повного струму для розрахунку магнітного поля.

1. Обчислимо напруженість магнітного поля на осі нормального соленоїда.

Соленоїдом називають сукупність спірально намотаних на циліндричну поверню витків ізольованого провідника, по якому проходить електричний струм. Як правило, вважають, що провідник намотаний в один шар щільно рівномірно і кількість витків обмотки на одиницю довжини поверхні є величиною сталою і дорівнює , де N –загальна кількість витків, l - довжина намотки соленоїда. Якщо довжина соленоїда більше ніж у 10 разів перевищує діаметр витків, то такий соленоїд називають нормальним.

Особливістю нормального соленоїда є те, що всередині його вздовж осі магнітне поле має однаковий напрям і однакову у всіх точках величину, тобто є однорідним (рис.6). Магнітне поле зоседержено всередині соленоїда, а зовні соленоїда Н=0.

Рис. 6

Для обчислення напруженності магнітного поля за допомогою закону повного струму оберемо замкнений контур 1, 2, 3, 4. Отже

;

Другий та четвертий інтеграми дорівнюють нулю, так як вектор  перпендикулярний ділянкам контура. Вважаючи, що ділянка 3-4 розміщена далеко від соленоїда, де Н=О тому третій інтеграл також дорівнює нулю. Враховуючи це маємо:

.

де l - довжина ділянки 1-2. На цій ділянці контур охоплює n×l струмів, тобто .

Згідно закону повного струму  або

і  ( 9 )

а  ( 10 )

2. Розглянемо магнітне поле тороїда (рис.7) – соленоїд, зігнутий у кільце.

3.

Рис. 7

Характерним для тороїда є те, що магнітне поле зосереджено тільки всередині тороїда і силові лінії мають вигляд замкнених концентричних кіл з центром в точці 0. Виберем контур у вигляді кола вздовж осі тороїда – радіуса R. Такий контур охоплює сумарний струм N×I, де N - число витків тороїда. Отже:; , або .

Звідки , ( 11 )

а так як  - число витків на одиницю довжини намотки, то

 ( 12 )

Розглянуті нами соленоїд і тороїд мають практичне використання, наприклад в техніці зв’язку: різного типу електромагнітні реле, в установках для одержання потужних магнітних полів.


ВИСНОВКИ

1. За допомогою закону Біо-Савара-Лапласа можна розрахувати напруженість магнітного поля, створеного будь-яким провідником з струмом.

2. З закону повного струму випливає, що робота по переміщенню провідника з струмом в магнітному полі на замкненому контуру не дорівнює нулю, отже магнітне поле не потенціальне, а вуихрове; аналогії електричному заряду і потенціалу в магнітному полі немає.

3. Робота по переміщенню провідника з струмом в магнітному полі прямо пропорційна силі струму, магнітному потоку, який перетинається провідником, або зміні магнітного потоку через поверхню замкненого провідника. А магнітний потік через будь-яку замкнену поверхню завжди дорівнює нулю.


ЛІТЕРАТУРА

1. Гусева Г.Б. Курс физики, §§ 55-56

2. Савельев И.В. т.2, Курс общей физики, § 38-41

3. Трофимова Т.И. Курс физики, §§ 110-1


Информация о работе «Дія магнітного поля на рухомі заряди та закон повного струму і його використання»
Раздел: Физика
Количество знаков с пробелами: 22550
Количество таблиц: 0
Количество изображений: 9

Похожие работы

Скачать
11798
0
7

... ; - середня швидкість направленого руху носіїв струму; S – переріз провідника. У цьому випадку сила Ампера буде дорівнювати , (12.1.9) де  - сила, з якою зовнішнє магнітне поле діє на магнітні поля всіх рухомих електричних зарядів, які є у виділеному елементі dl провідника. Оцінимо число рухомих електричних зарядів у елементі струму Idl, яке в нашому випадку дорівнює   nSdl = ...

Скачать
312140
1
113

... 4.                 Як графічно позначаються польові транзистори? Інструкційна картка №9 для самостійного опрацювання навчального матеріалу з дисципліни «Основи електроніки та мікропроцесорної техніки» І. Тема: 2 Електронні прилади 2.4 Електровакуумні та іонні прилади Мета: Формування потреби безперервного, самостійного поповнення знань; розвиток творчих здібностей та активізації розумово ...

Скачать
54996
1
14

... і до кінця розібратися навіть з КЕД. Річ у тому, що кожен фотон, маючи рівну нулю масу спокою, може існувати, лише рухаючись із швидкістю світла. Фотонна (світлова) ехо-камера або просто фотон-ехо-камера - нелінійний оптичний ефект, який також дозволяє здійснити звернення часу в системі атомних часток: атомів, молекул газу і рідини, домішок в кристалах, на екситонах напівпровідників і інших ...

Скачать
47733
9
18

1.1. Параметри ВТНП-матеріалів Із-за малої довжини когерентності x»( 1-30 )A вихрі слабо закріплені на дефектах зразка і можуть легко переміщатися по ньому як і при пропусканні через зразок струму, так і при наявності інгрідієнта температури. Рис.1.13 служить якісною ілюстрацією механізма руху вихрів. Потенціальний рельєф для вихрів у зразку визначає силу пінінга (рис.1.13 а). ...

0 комментариев


Наверх