4. Точкові дефекти.

Частина атомів або іонів може бути відсутньою на місцях, відповідних ідеальній схемі грат. Такі дефектні місця називаються вакансіями.

 

4.1 Вакансії

 

Вакансія, дефект за Шоткою, дефект кристала, що є відсутністю атома або іона у вузлі кристалічної решітки (рис. 7).

Рис. 7. Грати кристала з вакансією.

Вакансія є у всіх кристалах, як би ретельно ці кристали не вирощувалися. У реальному кристалі вакансії виникають і зникають в результаті теплового руху атомів. Механізм утворення вакансій можна представити як вихід атомів поверхневого шару на поверхню з подальшим переходом виникаючих поверхневих «дірок» (рис. 8 а, б, в).

При цьому замість зв'язку з трьома сусідніми атомами залишається лише один зв'язок, а дві інші розриваються. Отже, робота, необхідна для утворення вакансії, рівна енергії двох зв'язків.

  Вакансії безладно переміщуються в кристалі, обмінюючись місцями з сусідніми атомами. Рух вакансій є головною причиною перемішування (самодифузії) атомів в кристалі, а також взаємній дифузії контактуючих кристалів. Кожній температурі відповідає певна рівноважна концентрація вакансій. Кількість вакансій у кристалах металів поблизу температури плавлення досягає 1—2% від числа атомів.

При кімнатній температурі в алюмінію одна вакансія припадає на 1012 атомів, а в таких металів, як срібло і мідь, кількість вакансій при кімнатній температурі ще менша. Проте, не дивлячись на малу концентрацію, вакансії істотно впливають на фізичні властивості кристала: знижують щільність, викликають іонну провідність і ін. Вакансії відіграють важливу роль в процесах термообробки, спіканні і інших процесах.

У кристалах можуть бути присутніми чужорідні (домішкові) атоми або іони, які заміщують основні частинки, що утворюють кристал, або вміщуються між ними. Точковими домішками у кристалах є також власні атоми або іони, що змістилися з нормальних положень (міжвузлові атоми і іони), а також центри забарвлення — комбінації вакансій з електронами провідності (F-центри), з домішковими атомами і електронами провідності (Z-центри) або з дірками (V-центри). Центри забарвлення можуть бути викликані опроміненням кристалів.

 

4.2 Центри забарвлення

Центри забарвлення – дефекти кристалічної решітки, що поглинають світло в спектральній області, в якій власне поглинання кристала відсутнє. Спочатку термін «центи забарвлення» відносився тільки до так-званих F-центрів (від нім. Farbenzentren), які було виявлено вперше в 30-х рр. в лужно-галогенних кристалах Р. В. Полем із співробітниками (Німеччина) і що є аніонні, такі, що захопили електрон [модель французького ученого де Бура, підтверджена експериментально і теоретично розрахована С. И. Пекаром (СРСР)]. Надалі під центрами забарвлення стали розуміти будь-які точкові, такі, що поглинають світло поза областю власного поглинання кристала — катіонні і аніонні вакансії, міжвузлові іони (власні центри забарвлення), а також домішкові атоми і іони (домішкові центри). Центри забарвлення виявляються у багатьох неорганічних кристалах і в склі; вони широко поширені в природних мінералах.

  Власні центри забарвлення можуть бути створені дією іонізуючого проміння і світла, що відповідає області власного поглинання кристала (фотохімічне фарбування). Такі центри забарвлення називаються наведеними. При фотохімічному фарбуванні нерівноважні носії заряду (електрони провідності і дірки), що виникли під дією випромінювання, захоплюються дефектами кристала і змінюють їх заряд, що зумовлює появу нових смуг в спектрі поглинання і зміну забарвлення кристала. Зазвичай з'являється принаймні 2 типи центрів забарвлення — із захопленим електроном (електронний центр забарвлення) і діркою (дірковий центр забарвлення). Якщо частинки або фотони, що породжують фарбування, несуть чималу енергію, то вони можуть утворювати нові дефекти, які теж зазвичай виникають парами (наприклад, вакансія — міжвузловий іон). Наведені центри забарвлення можуть бути зруйновані при нагріванні (термічне знебарвлення) або дії світла, відповідного спектральній області поглинання самих центрів забарвлення  (оптичне знебарвлення). Під дією тепла або світла один з носіїв заряду, наприклад електрон, звільняється з дефекту, що захопив його, і рекомбінує з діркою. Такий процес може супроводжуватися, якщо енергія, що виділилася при цьому, випускається у вигляді кванта світла. Під дією тепло може зникати і пари дефектів (наприклад, міжвузловий атом може заповнити відповідну вакансію). В цьому випадку люмінесценція, як правило, не спостерігається — вся енергія, що виділилася, перетворюється на тепло.

При іншому способі утворення власних центрів забарвлення, так-званому адитивному фарбуванню носії заряду, необхідні для створення центрів забарвлення, вносяться до кристала ззовні, а не утворюються в ньому самому (звідси термін «адитивне фарбування», тобто фарбування при додаванні чого-небудь). Це досягається прогріванням в парах металу або введенням електронів в нагрітий кристал із загостреного катода, або ж за допомогою електролізу. При прогріванні в парах металу атоми металу дифундують всередину кристала, заповнюють катіонні вакансії і, віддаючи свої електрони аніонним вакансіям, утворюють F-центри. В деяких випадках (наприклад, у випадку флюорита) власні центри забарвлення можуть виникати в процесі кристалізації. Центри забарвлення, що утворюються при адитивному фарбуванні і кристалізації, не можуть бути знищені термічно або оптично — для їх руйнування потрібні інші дії. Так адитивно забарвлені лужно-галогенні кристали знебарвлюються при нагріванні в атмосфері галогену; флюорит вдалося одержати нефарбованим, змінивши умови кристалізації.

  Якнайповніше F-центри вивчені в лужно-галогенних кристалах, але виявлені вони і в інших кристалах. F-центр в лужно-галогенних кристалах обумовлює селективну смугу поглинання дзвонеподібного вигляду (F-смугу), зазвичай, у видимій області спектру, що зміщується для кристалів з однаковими аніонами (катіонами) і різними катіонами (аніонами) у бік довгих хвиль при збільшенні атомної ваги катіона (аніона). Наприклад, в NACI F-смуга має максимум поглинання в синій області спектру (= 465 нм) і колір кристала — жовто-коричневий (додатковий колір), в KCl — в зеленій області ( = 563 нм) і кристал виглядає фіолетовим.

  У лужно-галогенних кристалах виявлені і інші складніші власні центри забарвлення — F-агрегатні електронні центри: F2 (або М), F3 (або R), F4 (або N), є відповідно два, три і чотири зв'язані F-центри (тобто дві, три або чотири аніонні вакансії, що захопили 2,3,4 електрона); F2+, F3+ — іонізовані F2- і F3-центри і ін. Діркові центри в лужно-галогенних кристалах представлені молекулярними іонами галогену (наприклад, Cl), що захопили дірку (тобто що віддали один електрон) і зайняли положення двох нормальних іонів (Vk-центр) або положення одного іона (Н-центр), які можуть знаходитися у поєднанні з вакансією сусіднього катіона (VF-центр) або двох катіонів (Vt-центр).

  Домішкові центри забарвлення — чужорідні атоми або іони, упроваджені в кристал, скло або іншу основу. У кристали для утворення домішкових центрів забарвлення домішка вводиться в розплав або розчин в процесі кристалізації або ж шляхом дифузії в готовий кристал. Домішкові атоми і іони так само, як і ін. точкові дефекти, можуть захоплювати електрон або дірку, внаслідок чого змінюють смугу поглинання кристала і його забарвлення. Наведені домішкові центри забарвлення виникають в кристалах і аморфних тілах, що містять домішки, при фотохімічному фарбуванні завдяки зміні заряду домішки. В більшості випадків іони домішок, що входять в наведені центри забарвлення, мають валентність, відмінну від іонів основи. Так, наприклад, в кристалі KCl з домішкою Tl домішковий центр забарвленя — іон Tl+, а наведені домішкові центри забарвлення — атоми Tl і іони Tl2+; у рубіні (Al2O3 з домішкою Cr) домішковий центр забарвлення — іон Cr3+, наведені домішкові центри забарвлення — іони Cr2+ і Cr4+. Всі наведені центри забарвлення можуть бути зруйновані оптично або термічно.

  У кристалах з домішками виявлені також центри забарвлення змішаного типу: FA-центри і Z-центри. Перші є F-центрами, розташованими поряд з іоном домішки (активатором), другими (у лужно-галогенних кристалах), — F-центрами, пов'язаними з вакансіями і з двовалентними домішковими іонами (Ca, Sr). Спостерігаються також складні домішкові центри забарвлення, що складаються з двох або більше за частинками домішок одного або різних сортів. Наприклад, в лужно-галогенних кристалах виявлені домішкові центри забарвлення, пов'язані з впровадженням іонів (О-, O2-, S2-, S3-, SO2-, PO42-, CO32- і ін.). Центри забарвлення під впливом зовнішніх дій (світло, тепло, електричне поле) можуть коагулювати, утворюючи так-звані колоїдні центри.

  Центри забарвлення , будучи центрами захоплення електронів і дірок, можуть служити центрами люмінесценції. Найбільш ефективним методом дослідження центрів забарвлення є електронний парамагнітний резонанс у поєднанні із спектральними дослідженнями, що дозволяє розшифрувати будову центрів забарвлення.

  Фарбування і знебарвлення кристалів і аморфних тіл широко застосовується в науковому експерименті і в техніці. Воно використовується в дозиметрії ядерних випромінювань, в обчислювальній техніці (пристрій для зберігання інформації), в пристроях, де застосовуються фотохромні матеріали (сонцезахисні скельця, що темніють під дією сонячного світла і прояснюються в темноті) і ін. У археології і геології по дослідженнях центрів забарвлення, що виникли під дією випромінювання радіоактивних елементів, що знаходяться в товщі Землі, визначають вік глиняних виробів і мінералів. Забарвлення ряду коштовних каменів і самоцвітів пов'язане з центрами забарвлення (аметист, цитрин, алмаз, амазоніт і ін.). Деякі кристали і стікла з домішковими центрами забарвлення використовуються як активне середовище в лазерах (рубін, скло з домішкою Nb та ін.).

  У іонних кристалах, утворених частинками двох сортів (позитивними і негативними), точкові дефекти виникають парами. Дві вакансії протилежного знаку утворюють дефект за Шотою. Пара, що складається з межвузлового іона і залишеної ним вакансії, називається дефектом по Френкелю.

  Атоми в кристалах розташовуються на рівній відстані один від одного рядами, витягнутими вздовж певних кристалографічних напрямів. Якщо один атом зміститься з свого положення під ударом частинки, що налетіла, викликаної опроміненням, він може, у свою чергу, змістити сусідній атом і  т.д.

Таким чином зміщеним виявиться цілий ряд атомів, причому на якомусь відрізку ряду атомів один атом виявиться зайвим. Таке порушення в розташуванні атомів або іонів уздовж певних напрямів з появою зайвого атома або іона на окремій ділянці ряду називається краудіоном.

Опромінення виводить з положення рівноваги атоми або іони і в інших напрямах, причому рух передається по естафеті все більш далеко віддаленим атомам. У міру видалення від місця зіткнення частинки, що налетіла, з атомом кристала передача імпульсу виявляється локалізованою (сфокусованою) уподовж найбільш щільно упакованих напрямів.

Така естафетна передача імпульсу частинки, що налетіла, іонам або атомам кристала з постійним фокусуванням імпульсу уподовж щільно упакованих атомних рядів називається фокусоном.

4.3 Іонні кристали

Іонні кристали, кристали, в яких зчеплення частинок обумовлене переважно іонними хімічними зв'язками. Іонні кристали можуть складатися як з одноатомних, так і з багатоатомних іонів. Приклади іонних кристалів першого типу — кристали галогенідів лужних і лужноземельних металів, утворені позитивно зарядженими іонами металу і негативно зарядженими іонами галогену (NaCl, CsCl, CaF2, див. рис. 9.).

 Приклади іонних кристалів другого типу — нітрати, сульфати, фосфати, силікати і ін. солі цих же металів, де негативні іони кислотних залишків складаються з декількох атомів. Кислотні залишки можуть об'єднуватися в довгі ланцюги, шари, а також утворюють тривимірний каркас, в порожнечах якого розміщуються іони металу. Такі утворення зустрічаються, наприклад, в кристалічних структурах силікатів.



Информация о работе «Дефекти в металах і сплавах»
Раздел: Физика
Количество знаков с пробелами: 51571
Количество таблиц: 1
Количество изображений: 2

Похожие работы

Скачать
43511
0
4

... термічне і іонно-плазмове розпилювання, хімічне і електрохімічнео садження, гарт з рідкого стану і механічне легування (механо-активований синтез).[4] ІІІ. МЕТОДИ ОДЕРЖАННЯ АМОРФНИХ МЕТАЛІВ   3.1 Методи розпилювання Методи розпилювання, що застосовуються для швидкого загартування з розплаву, розрізняються по механізму розпилювання і за способом охолоджування крапель, що утворюються. ...

Скачать
57867
2
18

... - ця зварювання нагадує зварювання штучними електродами, тому що склад шихти може бути підібраний аналогічно обмазці електродів і дозволяє не тільки захищати розплавлений метал, але і легувати його, що практично неможливо при зварюванні під флюсом і в захисних газах. 2.1.1 Технологія зварювання вугільними і графітовим електродом Вугільні електроди складаються з аморфного електротехнічного вугі ...

Скачать
50680
2
4

... впливу технологічних факторів, що вивчаються, на ступінь ураженості злитку усадковою раковиною та розвитком окремих зон кристалізації. Таблиця 2.1Результати експериментів № п.п. Фактори технології розливки Найменування параметрів % Усадкової раковини Примітка (характеристика зон кристалізації) 1 Форма виливниці З розширенням уверх З розширенням униз 2 ...

Скачать
60305
0
2

... предметів туалету й ін. Томпак – сплав міді з цинком (10-12%). Застосовують для виготовлення ювелірної галантереї, стопок і інших побутових предметів. Існує кілька класифікацій ювелірних каменів. У торгівлі і промисловості ювелірні камені класифікують по їхній відносній цінності на дорогоцінні, напівкоштовні і виробні. Дорогоцінні і напівкоштовні камені звичайно прозорі, вироблені – непрозорі ...

0 комментариев


Наверх