2.3 Расчет сил, действующих на звенья механизма

Определим силы тяжести звеньев, главные векторы и главные моменты сил инерции звеньев.

Звено 1:

- т.к. кривошип уравновешен.

Звено 2:

Звено 3:

Ф2= ; Ф3=

 

2.4 Определение значений динамических реакций в кинематических парах групп Ассура

Fc[10] = 33221,2 H

Отсоединим группу Асура (2; 3). Приложим все известные внешние силы, главный вектор сил инерции Fи2 и главный момент сил инерции Ми2, а вместо отброшенных звеньев 1 и стойки 0 приложим реакции F21 и F30, причем неизвестного по величине F21 представим как сумму: , а реакцию F30 направим перпендикулярно направляющей ползуна.

Определим реакцию  из условия  для звена 2


Для определения составляющей  и реакции F30 запишем на основании принципа Даламбера векторное уравнение статики для групп Ассура (2; 3)

Выбираем масштабный коэффициент Н/мм

Определим чертежные отрезки, изображающие силы на чертеже:

Строим план сил группы Асура (2; 3)

Из плана определяем:

Переходим к силовому расчету механизма 1 класса. В точку В приложим реакцию . К звену 1 прикладываем главный момент сил инерции и движущий момент. Рассмотрим равновесие звена 1 относительно точки А.

Из плана сил определяем: .

 

2.5 Оценка точности расчетов

Находим относительную погрешность:

594,6 + 1258,8 – 33600·58,05·0,00095 = 1853,4 – 1852,9 = 0,5 ≈ 0.


3. Синтез зубчатого механизма Исходные данные:

Параметры планетарного редуктора:

U1H = 5,5; k = 4; m1 = 7 мм.

Параметры открытой зубчатой передачи:

Z4 = 15; Z5 = 28; m = 12 мм.

Параметры исходного контура по ГОСТ 16532–70:

a = 20 град; ha* = 1; c* = 0,25. 3.1 Подбор чисел зубьев

Подбор чисел зубьев и числа сателлитов производим с учетом условия соосности: воспользуемся формулой Виллиса с учетом

;

;

Подбор зубьев производим путем подбора с учетом ряда ограничений:

Для колес с внешними зубьями: Z1 ≥ Zmin= 17

Для колес с внутренними зубьями: Z3 ≥ Zmin = 85 при ha* = 1

Принимаем Z1 = 24, Z3 = (U1H – 1)*Z1 = 4.5 * 24 = 108

Число зубьев Z2 определяем из условия соседства:

Z1 + Z2 = Z3 – Z2

- условие целостности выполняется.

Сборка нескольких сателлитов должна выполняться без натягов при равных окружных шагах между ними. Оно выражается следующим соотношением:

, где Ц = 1, 2, 3, … – целое число; p = 0

- условие целостности выполняется

;

- выполняется.

Окончательно принимаем Z1 = 24; Z2 = 42; Z3 = 108.

Определяем диаметры колес планетарного редуктора. Редуктор собирается из колес без смещения.

 мм

мм

мм

Вычерчиваем схему редуктора в масштабе 1: 3

3.2 Проектирование цилиндрической эвольвенты зубчатой передачи внешнего зацепления

Исходные данные:

Z1 =13, Z2 =28 – числа зубьев колёс;

m = 8 мм – модуль зацепления;

h*a = 1 – коэффициент высоты головки зуба;

с* = 0,25 – коэффициент радиального зазора.

3.2.1 Выбор коэффициентов смещения x1 и x2 исходного контура

Коэффициенты смещения  и  должны соответствовать условию: (При отсутствии подрезания зубьев.)

 

x1 ³ xmin1; x2 ³ xmin2

 

xmin1 и xmin2 определяем по формуле:

;

Наименьший коэффициент смещения по критерию отсутствия подрезания зуба при заданных числах зубьев:

;

;

Выбираем коэффициенты смещения  и  из таблицы коэффициента смещения для силовых передач при свободном выборе межосевого расстояния (Z1 = 10…30, Z2 ≤ 30): x1=0.3; x2=0; xå= x1+ x2=0,3.


3.2.2 Угол зацепления

;

aw=22.06160=2204’

 

3.2.3 Делительные диаметры d1 иd2 d1 = m*z1 = 8*13 = 104 мм d2 = m*z2 = 18*28 = 224 мм 3.2.8 Радиусы основных окружностей

;

.

3.2.4 Делительное межосевое расстояние передачи

3.2.5 Межосевое расстояние передачи

3.2.6 Коэффициент воспринимаемого смещения

3.2.7 Коэффициент уравнительного смещения


3.2.8  Радиусы начальных окружностей

Проверка вычислений:

aw = rw1 + rw2 = 52.72 + 113.56 = 166.28 (мм)

Радиусы вершин зубьев

3.2.9  Радиусы впадин

Высота зубьев колес

h = ra1 – rf1 = ra2 – rf2 = 56,68 – 44,4 = 114,28 – 102 = 12,28 (мм)

Основной делительный шаг зубьев

 мм

Относительные толщины зубьев на вершинах в пределах нормы.

Вычерчиваем по полученным данным эвольвенту зубчатого зацепления в масштабе М 2,5: 1.


4. Синтез кулачкового механизма 4.1 Основные положения и определения

Кулачковым механизмом называется трехзвенный механизм, составленный из стойки и двух подвижных звеньев (кулачка и толкателя), связанных между собой посредством высшей кинематической пары. Механизм служит для воспроизведения заданного периодического закона движения ведомого звена. Ведущим звеном в кулачковом механизме является, как правило, кулачок, ведомым звеном толкатель.

Толкатель в кулачковом механизме заканчивается, как правило, вращающимся роликом, который касается кулачка непосредственно. Наличие ролика никак не отражается на законе движения толкателя. Назначение ролика – перевод трения скольжения толкателя по кулачку, в трение качения ролика по поверхности кулачка. В итоге получаем повышение долговечности кулачкового механизма по износу.

Кулачку в кулачковом механизме присущи два профиля – действительный (рабочий) и теоретический.

Действительным профилем является профиль кулачка, с которым непосредственно соприкасается ролик толкателя.

Теоретический профиль – это кривая, которую описывает центр ролика толкателя при движении относительно кулачка.

Действительный и теоретический профили кулачка являются эквидистантными (равноудаленными друг от друга) кривыми.

В движении кулачкового механизма различают в общем случае четыре этапа (фазы):

1 этап – удаление толкателя, фазовый угол , 2 этап – дальнее стояние толкателя, фазовый угол . Профиль кулачка на этапе дальнего стояния есть окружность радиуса с центром на оси О вращения кулачка.

3 этап – приближение толкателя, фазовый угол . 4 этап – ближнее стояние толкателя, фазовый угол .

Профиль кулачка на этапе ближнего стояния толкателя, является дугой окружности радиуса , с центром на оси О вращения кулачка. При этом .

Соответствие между фазовыми углами в движении кулачка и перемещением толкателя устанавливается, так называемой, циклограммой работы кулачкового механизма.

4.2 Исходные данные

ход толкателя, мм;

 фазовые углы кулачка, соответствующие этапам удаления и приближения толкателя, градусы;

фазовые углы кулачка, соответствующие дальнему и ближнему стоянию толкателя, градусы;

Законы движения:

– при удалении: трапецеидальный

– при приближении: параболический симметричный

4.3 Расчет передаточных функций выходного звена Рассчитаем перемещения Si и аналог ускорения Si¢ по соответствующим заданному закону формулам. Фаза удаления:

, при

, при

, при

, при

, при

, при

, при

, при

, при

, при


, при

, при

, при

, при

, при

h = 20 (мм); φy= 120º = 2.093 рад; ji=0, 0.348, 0.697, 1.046, 1.395, 1.744, 2.093 рад

Фаза возвращения:

, при

, при

, при

, при


, при

, при

 

φb = 50º = 0,872 рад, ji=0, 0.145, 0.29, 0.436, 0.581, 0.726, 0.872 рад

Табл. 4.1

i

ji

Si, м

S`, м S``, м

yi, мм

y`, мм y``, мм
Фаза удаления
0 0 0 0 0 0 0 0 0
1 20 20 0,00065 0,00563 0,03238 1,3 11,26 64,76
2 40 40 0,00395 0,01377 0,02435 7,9 27,54 48,7
3 60 60 0,01001 0,01908 0,00006 20,02 38,16 0,12
4 80 80 0,01601 0,01381 -0,0243 32,02 27,62 -48,6
5 100 100 0,01935 0,00531 -0,0243 38,7 10,62 -48,6
6 120 120 0,02 0 0 40 0 0
Фаза приближения
7 0 220 0 0 0,0526 0 0 105,2
8 8.33 228.33 0,0011 0,0133 0,0526 2,2 7,3 105,2
9 16.66 236.66 0,00424 0,0266 0,0526 8,48 14,6 105,2
10 24.99 244.99 0,01 0,04 0,0526 20 21,9 105,2
11 33.32 253.32 0,01554 0,01755 -0,0526 31,08 19 -105,2
12 41.65 261.65 0,01887 0,0088 -0,0526 37,74 9,5 -105,2
13 50 270 0,02 0 -0,0526 40 0 -105,2

 

μl= 0,0005 м/мм.

 

4.4 Определение основных размеров

Определим минимальный радиус кулачка из условия выпуклости профиля. Для этого на основании графиков S(φ) и S» (φ), строим график S(S’’). Проведем касательную под углом 45 к оси S. За центр вращения кулачка выбираем точку Оi лежащая ниже точки О на 10 мм.

Ro= 0,0752 м

Проводим окружность радиусом Ro. Так как e = 0, линия движения толкателя yy проходит через центр вращения кулачка Оi. Вдоль этой линии от точки АО откладывается перемещение толкателя согласно графику.


Заключение

В результате выполнения курсовой работы закрепил и обобщил знания и навыки, полученные при изучении дисциплины, научился применять на практике теорию курса (кинематику, динамику, синтез эвольвентного зацепления и синтез кулачкового механизма).

Выполняя курсовой проект по теории машин и механизмов, овладел навыками использования общих методов проектирования и исследования механизмов. Также овладел методами определения кинематических параметров механизмов, оценки сил, что действуют на отдельные звенья механизма, научился оценивать сконструированный механизм с точки зрения его назначения – обеспечивать необходимые параметры движения.


Список использованных источников

1. Попов С.А. Курсовое проектирование по теории механизмов и механике машин. – М.: Высшая школа, 1986.

2. Попов С.А., Тимофеев Г.А. Курсовое проектирование по теории механизмов и механике машин. – М.: Высшая школа, 1999.

3. Курсовое проектирование по теории механизмов и машин. / Под ред. Девойно Г.Н. – Мин.: Высшая школа, 1986.

4. Теория механизмов и машин. / Под ред. Фролова К.В.


Информация о работе «Водяной насос»
Раздел: Промышленность, производство
Количество знаков с пробелами: 22206
Количество таблиц: 10
Количество изображений: 0

Похожие работы

Скачать
12716
6
1

... на отдых и личные надобности % от оперативного времени, Тот.л.-6%. Расчет технически обоснованной операции – сварочной нецелесообразно производить, так как в пункте 3.7 были описаны режимы сварки, инструмент и применяемое оборудование. Технологическая документация Технологический процесс на восстановление деталей согласно стандарта Единой Системы Технологической Документации оформляется ...

Скачать
60888
1
18

... ірної або охолоджуючої води. Необхідний ресурс - не менше 10 тис. год. Рисунок 15 - Схема установки для випробувань натурних вузлів ущільнень: 1 - фільтр; 2 - бак; 3 - насос; 4 - гідроакумулятор; 5 - компресор; 6 - витратомірний пристрій; 7-теплообмінник; 8 - гідроциклон; 9 - прилад; 10, 11 та 12 - ступені основного ущільнення; 13 - плаваюче ущільнення; 14 - допоміжна ступень ущільнення; ...

Скачать
24737
2
11

... ів, тоді як у 2001 - 42%. Тобто з кожним роком вітчизняні виробники побутових насосів продовжують здавати свої позиції. Торгові марки на ринку побутових насосів. Властиво, по-справжньому відомих марок побутових насосів, тобто тих, що "на слуху" у всіх торговців, на українському ринку не так і багато. Насамперед пригадуються німецькі "гранди" Wіlo і Grundfos. Ці дві марки поділили між собою ринок ...

Скачать
35880
5
5

... заусенцев и т.д. Рабочие колеса не должны иметь износа лопаток и дисков от коррозии и эрозии более 25% от них номинальной толщины. Изгиб лопаток не допускается.   4.6 Ведомость дефектов на ремонт центробежного насоса марки НГК 4х1   Таблица 4.6.1 - Ведомость дефектов Наименование узлов и дета лей подлежа щих ре монту Характер неис прав ности Метод уст ранения Необходимые мате риалы ...

0 комментариев


Наверх