1.2.1 Перечень звеньев механизма

1. – кривошип; 2. – шатун; 3 – ползун.

1.2.2 Перечень кинематических пар

0–1 – кинематическая пара 5-го класса, вращательная;

1–2 – кинематическая пара 5-го класса, вращательная;

2–3 – кинематическая пара 5-го класса, вращательная;

3–0 – кинематическая пара 5-го класса, поступательная;

1.3 Определение степени подвижности механизма

Степень подвижности механизма определим по уравнению Чебышева

W= - -

где – количество движущихся звеньев механизма;

Для механизма, что исследуется, =3, кинематических пар 5-го класса =4, кинематические пары 4-го класса отсутствуют.

Имеем: W=3×3–2×4=1.

Для работы механизму необходима только одно ведущее звено, так как степень подвижности равна единице.


1.4 Определение недостающих размеров 1.4.1 Определение длины

Определим длину l1 и l2, которые находятся из следующего неравенства:

(1) ;

; ; ; ;

из формулы (1)  

;

1.4.2 Определяем угловую скорость

1.4.3 Определим массы звеньев


1.5 Описание определения кинематических характеристик рычажного механизма В левой части чертежа строим планы положений механизма. За начальное положение механизма принимаем положение, когда кривошип и шатун находятся в мертвом положении (вытянуты в одну линию). Затем строим 12 равноотстоящих положений входного звена (кривошипа АВ). Для выполнения построений планов положений механизма предварительно определяем масштабный коэффициент длины.

-действительная длина звена АВ, м

АВ – отображающий ее отрезок на чертеже, мм

Принимаем АВ=60 мм.

;

;

Планы скоростей

Для построения планов скоростей воспользуемся векторными уравнениями для построения планов скоростей.

 (м/с)

Введем масштабный коэффициент скорости (м/мм*с)

pb = vb / μv =  = 71,6 мм


Вектор скорости точки В перпендикулярен звену АВ, вектор скорости точки С направлен по направлению движения поршня 3, вектор скорости точки С относительно точки В перпендикулярен звену ВС.

Для построения отрезка ps2, изображающего вектор скорости центра масс S2, воспользуемся теоремой подобия:

;

Измеряем на планах скоростей длины соответствующих векторов и полученные значения записываем в таблицу 1.2.

Таблица 1.2

1 2 3 4 5 6 7 8 9 10 11 12
pc, мм 0 42,9 69,6 72,2 55 28,1 1,1 29,8 55,2 71 68,3 42,4
bc, мм 71,6 63,9 39 2,6 34,5 61,4 71,6 63,3 38,4 2,6 33,9 60,8

ps2, мм

46,5 55,1 68,4 71,8 64,2 52,4 46,6 52,3 63,7 71,4 68,5 55,9
1.6 Построение диаграмм

Вычерчиваем заданную индикаторную диаграмму, под линией движения ползуна. Масштабный коэффициент длин принимаем таким же как и для планов перемещений .

Максимальную ординату на графике давления принимаем равной 50 мм, тогда .

Полный цикл водяного насоса совершается за 1 оборот кривошипа.

Значение силы полезного сопротивления FCопределяем по формуле: .

Знак «+» берется в том случае, когда сила FCнаправлена противоположно движению ползуна.

Определяем значения давлений и сил сопротивления для всех положений кривошипа. Результат заносим в таблицу 1.3.

Таблица 1.3

1 2 3 4 5 6 7 8 9 10 11 12

Pi, МПа

0.02 0.02 0.02 0.02 0.02 0.02 0,8 0,8 0,8 0,8 0,8 0,8

FCi, H

830 830 830 830 830 830 33221 33221 33221 33221 33221 33221

Строим диаграмму аналогов скоростей рабочего звена, принимая максимальную ординату 150 мм.

Результаты заносим в таблицу 1.4.

Таблица 1.4

1 2 3 4 5 6 7 8 9 10 11 12

vqc, мм

0 0,049 0,069 0,071 0,054 0,027 0,001 0,029 0,054 0,070 0,068 0,042

Принимаем масштабный коэффициент:

Строим диаграмму аналогов скоростей выходного звена в зависимости от угла поворота кривошипа.


1.7 Динамическая модель машинного агрегата

В связи с необходимостью в данном проекте выполнения динамического анализа кривошипно-ползунного механизма целесообразно динамическую модель машинного агрегата представить в виде вращающегося звена (звена приведения), закон движения которого был бы таким же, как и у кривошипа 1 механизма, т.е. , , .

Приведенный момент сил Mn представим в виде:

-приведенный момент сил сопротивления.

-приведенный момент движущих сил, принимается в проекте постоянный.

Приведенный момент инерции агрегата определяется из условия равенства кинематической энергии звена приведения и кинетической энергии звеньев машинного агрегата, характеризуемых переменными по величине аналогами скоростей, а приведенный момент Мn находится из условия равенства элементарных работ этого момента и тех действующих сил, которые приводятся к звену приведения.

1.8 Расчет приведенных моментов инерции

За звено приведения примем кривошип АВ.

Общая формула для определения приведенного момента инерции звеньев имеет вид:


В моем курсовом проекте эта формула будет следующей:

Отношение скоростей есть передаточные функции, которые определяются из планов скоростей.

Введем обозначения:

; ;

кг

кг

кг

кг

кг

 кг*м2/мм

Результаты вычислений приведены в таблице 1.5. По этим же данным строим диаграмму приведенного момента инерции механизма.

Таблица 1.5

1 2 3 4 5 6 7 8 9 10 11 12

Jп, кг*м2

0,058 0,071 0,092 0,096 0,080 0,064 0,058 0,065 0,080 0,094 0,091 0,071

По оси абсцисс принимаем масштабный коэффициент:

где L – длина отрезка оси абсцисс, соответствующая углу 2π рад.

1.9 Расчёт приведенных моментов сил сопротивления

Определяем приведенный к валу кривошипа момент от сил сопротивления, при этом учитываем действие сил , , . Силу веса кривошипа учитывать не следует, так как ее работа равна нулю (центр тяжести кривошипа совпадает с осью вращения – его скорость равна нулю) и приведенный момент от нее равен нулю.

Приведенный момент найдем из условия и равенства мощностей приведенного момента и приводимых сил:


α-угол между направлением силы  и направлением скорости центра тяжести .

Знак «+» перед мощностями сил веса и сил сопротивлений будем ставить тогда, когда эта сила является силой сопротивления; знак «–» перед движущими силами.

Окончательно получим:

 

Fc [1–6] = 830 H

Fc [7–12] = 33221 H

G2 = m2*g = 7.8*9.81 = 76,518 H

G3 = m3*g = 7.8*9.81 = 76,518 H

1 2 3 4 5 6 7 8 9 10 11 12

cos α

0.034 -0.669 -0.933 -0.999 -0.939 -0.656 -0.034 0.615 0.920 0.999 0.951 0.707

Результаты заносим в таблицу 1.6.

Таблица 1.6

1 2 3 4 5 6 7 8 9 10 11 12

Mпр,

-0,0955 -23,308 -37,5718 -36,641 -29,09 -14,64 -28,89 -778,34 -1441,8 -1854,7 -1784,4 -1107,8


1.10 Определение работы сил сопротивления А и движущих сил Аg

Так как работы сил сопротивления равны , то график  строим методом численного интегрирования графика  по формуле трапеции:

- шаг интегрирования

Результаты заносим в таблицу 1.7

Таблица 1.7

1 2 3 4 5 6 7 8 9 10 11 12
А, Дж 0 -6,12 -22 -41,4 -58,6 -70 -81,38 -292,6 -873,4 -1735,9 -2688 -3444,7 -3734,5

Дж/мм

1.11 Построение графика изменения кинетической энергии и диаграммы «энергия-масса»

Для построения графика изменения кинетической энергии поступаем следующим образом: вычитаем ординаты графика  из соответствующих ординат графика  и строим график суммарной (избыточной) работы , который одновременно является графиком изменения кинетической энергии механизма и приведенного момента инерции.

Дж/мм

1.12 Определение параметров маховика

Для определения момента инерции маховика по закону коэффициента неравномерности движения δ следует провести касательные к графику «энергия-масса» под углами ψmaxи ψminк оси абсцисс (оси приведенного момента инерции) тангенсы которых определяются по формуле:

;

 кг*м2

Т.к. маховик выполнен в форме стального диска, момент инерции маховика будет равен:

,


где m – масса маховика, r – плотность (для стали r=7800 кг/м3), yb = b/D – относительная ширина маховика.

Подставив значения получим:

Масса маховика

(кг)

1.13 Определение истинной угловой скорости звена приведения

Истинная угловая скорость звена приведения находится следующим образом:

;

где

Дж

с-1

Результаты вычислений приведены в таблице 1.8


Таблица 1.8

1 2 3 4 5 6 7 8 9 10 11 12

, с-1

29,88 29,89 29,89 29,91 29,94 29,97 29,99 29,99 29,96 29,92 29,88 29,87

Проверка: %


2. Динамический анализ рычажного механизма

 

Силовой расчет механизма

Задачей силового анализа является определение при заданном законе движения неизвестной внутренней силы, то есть усилия (реакции) в кинематических парах. Эта задача решается с применением принципа Даламбера. Силовой расчет плоских рычажных механизмов выполняется по группам Асура в порядке обратном их присоединения к входному звену.


Информация о работе «Водяной насос»
Раздел: Промышленность, производство
Количество знаков с пробелами: 22206
Количество таблиц: 10
Количество изображений: 0

Похожие работы

Скачать
12716
6
1

... на отдых и личные надобности % от оперативного времени, Тот.л.-6%. Расчет технически обоснованной операции – сварочной нецелесообразно производить, так как в пункте 3.7 были описаны режимы сварки, инструмент и применяемое оборудование. Технологическая документация Технологический процесс на восстановление деталей согласно стандарта Единой Системы Технологической Документации оформляется ...

Скачать
60888
1
18

... ірної або охолоджуючої води. Необхідний ресурс - не менше 10 тис. год. Рисунок 15 - Схема установки для випробувань натурних вузлів ущільнень: 1 - фільтр; 2 - бак; 3 - насос; 4 - гідроакумулятор; 5 - компресор; 6 - витратомірний пристрій; 7-теплообмінник; 8 - гідроциклон; 9 - прилад; 10, 11 та 12 - ступені основного ущільнення; 13 - плаваюче ущільнення; 14 - допоміжна ступень ущільнення; ...

Скачать
24737
2
11

... ів, тоді як у 2001 - 42%. Тобто з кожним роком вітчизняні виробники побутових насосів продовжують здавати свої позиції. Торгові марки на ринку побутових насосів. Властиво, по-справжньому відомих марок побутових насосів, тобто тих, що "на слуху" у всіх торговців, на українському ринку не так і багато. Насамперед пригадуються німецькі "гранди" Wіlo і Grundfos. Ці дві марки поділили між собою ринок ...

Скачать
35880
5
5

... заусенцев и т.д. Рабочие колеса не должны иметь износа лопаток и дисков от коррозии и эрозии более 25% от них номинальной толщины. Изгиб лопаток не допускается.   4.6 Ведомость дефектов на ремонт центробежного насоса марки НГК 4х1   Таблица 4.6.1 - Ведомость дефектов Наименование узлов и дета лей подлежа щих ре монту Характер неис прав ности Метод уст ранения Необходимые мате риалы ...

0 комментариев


Наверх