Вариационные задачи с подвижными границами

31345
знаков
3
таблицы
16
изображений

2. Вариационные задачи с подвижными границами

 

2.1 Простейшая задача с подвижными границами

В гл. 1 при исследовании функционала

предополагается, что граничные точки  заданы.

Предположим теперь, что одна или обе граничные точки могут перемещаться, тогда класс допустимых кривых расширяется. Поэтому, если на какой-нибудь кривой  достигается экстремум в задаче с подвижными граничными точками, то экстремум тем более достигается по отношению к более узкому классу кривых, имеющих общие граничные точки с кривой , и, следовательно, должно быть выполнено основное, необходимое для достижения экстремума в задаче с неподвижными границами условие – функция  должна быть решением уравнения Эйлера:

.

Итак, кривые , на которых реализуется экстремум в задаче с подвижными границами, должны быть экстремалями.

Общее решение уравнения Эйлера содержит две произвольные постоянные, для определения которых необходимо иметь два условия. В задаче с неподвижными граничными точками такими условиями были


, .

В задаче с подвижными границами одно или оба эти условия отсутствуют и недостающие условия для определения произвольных постоянных общего решения уравнения Эйлера должны быть получены из основного необходимого условия экстремума , так как в задаче с подвижными границами экстремум достигается лишь на решениях  уравнения Эйлера, то в дальнейшем можно рассматривать значение функционала лишь на функциях этого семейства. При этом функционал  превращается в функцию параметров  и  и пределов интегрирования , , а вариация функционала совпадает с дифференциалом этой функции. Для упрощения будем считать, что одна из этих точек, например , закреплена, а другая  может перемещаться и переходить в точку , или, как обычно обозначают в вариационном исчислении, .

Допустимые кривые  и  будем считать близкими, если модули вариаций  и  малы и малы модули приращений  и .

Экстремали, проходящие через точку , образуют пучок экстремалей . Функционал  на кривых этого пучка превращается в функцию  и . Если кривые пучка не пересекаются, то этот функционал можно рассматривать как однозначную функцию  и  (рис. 3.1).

 


2.2 Условие трансверсальности

 

Вычислим вариацию функционала  на экстремалях пучка  при перемещении граничной точки из положения  в положение . Так как функционал  на кривых пучка превратился в функцию  и , то его вариация совпадает с дифференциалом этой функции. Выделим из приращения главную линейную по отношению к  и  часть:

(3.1)

Первое слагаемое правой части преобразует с помощью теоремы о среднем значении:

, где .


В силу непрерывности функции  будем иметь:

,

где  при , .

Итак,

.

Второе слагаемое (3.1) преобразуем путем разложения подинтегральной функции по формуле Тейлора

где  является бесконечно малой более высокого порядка, чем  или . В свою очередь линейная часть

может быть преобразована путем интегрирования по частям второго слагаемого подинтегральной функции к виду


.

Значение функционала берется лишь на экстремалях, следовательно

. Так как граничная точка  закреплена, то . Следовательно,

.

Итак, окончательно имеем:

где приближенные равенства также справедливы с точностью до членов порядка выше первого относительно  и .

Таким образом


Основное необходимое условие экстремума  приобретает вид

(3.2)

Если вариации  и  независимы, то получаем

 и

Однако чаще всего вариации  и  бывают зависимы. Пусть, например, правая граничная точка  может перемещаться по некоторой кривой

Тогда  и условие (3.2) принимает вид

или, так как  изменяется произвольно, то

. (3.3)


Это условие устанавливает зависимость между угловыми коэффициентами  и  в граничной точке. Оно называется условием трансверсальности.

Условие трансверсальности совместно с условием  позволяет определить одну или несколько экстремалей пучка , на которых может достигаться экстремум.

Пример. Найти условие трансверсальности для функционалов вида

Условие трансверсальности (3.3) имеет в данном случае вид

или

Полагая, что  в граничной точке, получим

или

.

Условие трансверсальности в данном случае свелось к условию ортогональности.


2.3 Задача с подвижными границами для функционалов от нескольких функций

Если при исследовании на экстремум функционала

(3.4)

одна из граничных точек, например  перемещается (, ), а другая, , неподвижна, то экстремум может достигаться лишь на интегральных кривых системы уравнений Эйлера

, (3.5)

Общее решение системы уравнений Эйлера содержит четыре произвольные постоянные. Зная координаты граничной точки , которую считаем неподвижной, можно исключить две произвольные постоянные. Для определения двух других произвольных постоянных необходимо иметь еще два уравнения, которые могут быть получены из условия , при условии, что функционал задается лишь на решениях системы уравнений Эйлера (3.5). При этом функционал превращается в функцию координат  точки и вариация функционала превращается в дифференциал этой функции. Если экстремали пучка с центром в точке  не пересекаются, то эта функция будет однозначной.

Вычисление вариации  проводится аналогично тому, как это делалось в 3.2:

Применяя теорему о среднем значении к первому интегралу и учитывая непрерывность функции , выделив главную линейную часть с помощью формулы Тейлора во втором интеграле и используя равенства (3.5), получим

(3.6)

Откуда, учитывая зависимость , , , получим

,  и .


Если граничная точка  может перемещаться по некоторой кривой , , то

, , и условие  (3.6)

переходит в условие (считая  произвольным).

(3.7)

Это условие носит название условия трансверсальности в задаче об исследовании на экстремум функционала (3.4).

Условие (3.7) совместно с уравнениями ,  дает недостающие уравнения для определения произвольных постоянных в общем решении системы уравнений Эйлера.

Если граничная точка  может перемещаться по некоторой поверхности , то , причем вариации  и  произвольны. Следовательно, условие (3.6) в силу независимости  и  дает

,

(3.8)

Если рассматривать функционал


,

то в случае одной подвижной точки  в этой точке

Пример. Найти условие трансверсальности для функционала

,

если .

Условия трансверсальности (3.8) в данном случае имеют вид

 и  при  или  при  т.е. являются условиями параллельности вектора касательной  к искомой экстремали в точке  и вектора нормали  к поверхности  в той же точке. Следовательно, усливие трансверсальности становится в данном случае условием ортоганальности экстремали к поверхности .

Примеры

1. Найти экстремаль функционала  при заданных краевых условиях на концах отрезка . Считается, что .

Пример 1.


, , .

Решение:

Вычислим первую вариацию функционала

.

После преобразования этого функционала получим

.

Произвольные функции  и удовлетворяют условию .

В точке  предполагаемого экстремума функционала  должно выполняться необходимое условие , поэтому уравнение Эйлера будет иметь вид

Это уравнение приводится к виду

и должно решаться при условии , .

Имеем

, , , ;

, ,

, , .

откуда , .

Таким образом, получаем решение .

Исследовать функционал , заданный на отрезке , на экстремум. При заданных краевых условиях считается, что .

Пример 2.

, , .

Решение. Найдем первую вариацию функционала

Необходимое условие экстремума функционала в точке  даёт уравнение Эйлера

.

Это уравнение при краевых условиях ,  дает решение

.

Так как в данном примере

, то


, , ,

и усиленное условие Лежандра

 выполняется.

Уравнение Эйлера для интеграла (1.39) (см. 1.8.) будет иметь вид (после замены  на )

или

Откуда

, .

Для нахождения ,  имеем условия , .

Откуда

, .

Проверим условие Якоби. Решение  на интервале  положительно. Следовательно, усиленное условие Якоби выполняется. Отсюда делаем заключение, что экстремаль  дает функционалу

сильный (абсолютный) минимум.


Список используемой литературы

1.  Гельфанд И.М., Фомин С.В. Вариационное исчисление. М.: Наука. 1961.

2.  Коршунов Ю.М., «Математические основы кибернетики», Москва, 1987 г.;

3.  Таха Х., «Введение в исследование операций», Москва, 1985 г.;

4.  Д. Сю., А. Мейер, «Современная теория автоматического управления и её применение», Машиностроение, 1972 г.;


Информация о работе «Вариации при исчислении»
Раздел: Математика
Количество знаков с пробелами: 31345
Количество таблиц: 3
Количество изображений: 16

Похожие работы

Скачать
23856
7
0

... , а также для сравнения степени вариации одноименных признаков в нескольких совокупностях исчисляется относительный показатель вариации — коэффициент вариации (V), который представляет; собой процентное отношение среднего квадратического отклонения к средней арифметической: По величине коэффициента вариации можно судить о степени вариации признаков, а следовательно, об однородности состава ...

Скачать
393893
11
11

... предложения и представляет равновесную цену в каждый период времени. Предположим также, что все прочие внешние факторы ценообразования, кроме налогов, в рассматриваемый период времени остаются неизменными. Р Q Рис.12. Воздействие изменения налога на кривые спроса ...

Скачать
296463
0
0

... ), интересующей органы внутренних дел, и необходимой им для выполнения возложенных задач. При этом необходимо учесть оперативную специфику работы правоохранительных органов. В современных условиях важное значение для выявления, пресечения и расследования налоговых преступлений приобретают сведения о хозяйственной деятельности налогоплательщика, получившие отражение в бухгалтерской документации ...

Скачать
127646
54
13

... основными производственными фондами (факторный признак - х) по данным задачи 1 вычислите коэффициент детерминации и эмпирическое корреляционное отношение. Поясните их значение. 5. ПРАКТИКУМ ПО ТЕОРИИ СТАТИСТИКИ   1.  ГРУППИРОВКА СТАТИСТИЧЕСКИХ ДАННЫХ И ЕЕ РОЛЬ В АНАЛИЗЕ ИНФОРМАЦИИ   Одним из основных наиболее распространенных методов обработки и анализа первичной статистической информации ...

0 комментариев


Наверх