3. ТЕПЛООБМЕН ИЗЛУЧЕНИЕМ И СЛОЖНЫЙ ТЕПЛООБМЕН

 

3.1 Радиационные свойства газов

Излучение газов существенно отличается от излучения, испущенного твердых тел. В то время как монохроматическая плотность потока излучения для твердого вещества практически изменяется во всем спектре, испускание и поглощение излучения в газах происходят в узких полосах длин волн.

Вид спектра поглощения водяного пара типичен и для других газов. Испускание и поглощение в очень узких полосах длин волн значительны, но в соседних смежных полосах они могут падать до нуля. Газы с симметричным строением молекул, такие, как O2, N2 и Н2, не относятся к сильно поглощающим или излучающим. В большинстве случаев при температуре, меньшей температуры ионизации этих газов, излучением газов с симметричным строением молекул можно пренебречь. С другой стороны, излучение и поглощение газов с несимметричной структурой молекул могут быть значительными. Наиболее важными для техники газами с несимметричной структурой являются Н20, CO2, CO, SO3, NH3 и углеводороды. Ограничимся рассмотрением свойств двух из них: Н20 и СО2.

Еще одно важное различие между радиационными свойствами непрозрачных твердых тел и газов состоит в том, что форма газового объема влияет на его свойства, тогда как свойства непрозрачного твердого тела не зависят от его формы. Толстые слои газа поглощают больше излучения, чем тонкие, и пропускают меньше излучения, чем тонкие. Поэтому кроме общепринятых свойств, определяющих состояние газа, таких, как температура и давление, необходимо еще указать характерный размер массы газа, прежде чем определять его радиационные свойства. Характерный размер в газе называется средней длиной пути луча. Средние длины пути луча в объемах газа различных простых геометрических форм даны в таблице 3.1.

 

Таблица 3.1 - Средняя длина пути луча в объемах газа различных геометрических форм

Форма объема газа L

Сфера

Бесконечный цилиндр

Бесконечные параллельные пластины

2/3 диаметра

Диаметр

Два расстояния между пластинами

Полубесконечный цилиндр, излучающий на центр основания Диаметр

Прямой круговой цилиндр с высотой, равной диаметру

излучающий на центр основания

излучающий на всю поверхность

Бесконечный цилиндр полукруглого поперечного сечения, излучающий на точку в середине плоской стороны

Диаметр

2/3 диаметра

Радиус

Прямоугольные параллелепипеды

куб

1:1:4, излучающий на грань 1 X 4

излучающий на грань 1 X 1

излучающий на все грани

2/3 стороны

0,9 меньшего ребра

0,86 меньшего ребра

0,891 меньшего ребра

Пространство вне пучка бесконечных труб с центрами в

вершинах равностороннего треугольника

диаметр трубы равен промежутку между

трубами

диаметр трубы равен 1/2 промежутка между

трубами

3,4 промежутка

4,44 промежутка

Для других геометрических форм, не перечисленных в таблице, средняя длина пути луча в газе может быть приближенно определена по формуле

 (3.1)

где V—объем газа, S—площадь поверхности газа.

В работах Хоттеля измерены зависимости излучательной способности ряда газов от температуры, полного давления и средней длины пути луча. Кривые для излучательных способностей паров Н2О и CO2 показаны на рисунке 3.1 и 3.2. На этих двух графиках  и — парциальные давления газов. Полное давление для обоих случаев 0,10133 МН/м2 (1атм). В случае когда полное давление газа не равно 0,10133 МН/м2, значения  и  с рисунков 3.1 и 3.2 должны быть умножены на поправочные коэффициенты. Поправочные коэффициенты  и  представлены на рисунках 3.3 и 3.4.

Рисунок 3.1 Излучательная способность водяного пара при полном давлении 0,10133 МН/м2 (1 атм).

Излучательные способности Н2О и СО2 при полном давлении РТ, отличном от 0,10133 МН/м2 (1 атм), определяются выражениями

 

В случае, когда оба газа, Н2О и СО2, образуют смесь, излучательную способность смеси можно рассчитать как сумму излучательных способностей газов, определенных при допущении, что каждый газ существует отдельно, за вычетом коэффициента De, который учитывает излучение в перекрывающихся спектральных полосах. Коэффициент De для Н2О и СО2, представлен на рисунке 3.5. Излучательная способность смеси Н2О и СО2 поэтому определяется выражением

eсм = + - De (3.2)

Рисунок 3.2 Излучательная способность углекислого газа при полном давлении 0,10133 МН/м2 (1 атм).


Рисунок 3.3 Поправочный коэффициент для излучательной способности водяного пара при давлениях, отличных от 0,10133 МН/м (1 атм)

 

Рисунок 3.4. Поправочный коэффициент для излучательной способности СО2 при давлениях, отличных от 0,10133 МН/м (1 атм)

Рисунок 3.5 Поправочный коэффициент De для излучательной способности смеси водяного пара и СО2.

Пример 3.1. Определить излучательную способность газовой смеси, состоящей из N2, Н2О и СО2 при температуре 800 К и имеющей форму сферы диаметром 0,4 м. Парциальные давления газов  = 0,1 МН/м2,  = 0,04 МН/м2, =0,06 МН/м2.

Решение. Из таблицы 3.1 определяем значение средней длины пути луча для сферы

L=(2/3)D=0,27 м

(по формуле (3.1) L = 0,24 м). Значения параметров, используемых на рисунках (3.1) и (3.2), равны

T = 800К, L = 0,0104 (МН/м2)м, L = 0,0156 (МН/м2)м.

Излучательные способности для полного давления 0,1 МН/м2 равны

 = 0,15,  = 0,125.

Считаем, что N2 при 800 К существенно не излучает. Поскольку полное давление газа 0,2 МН/м2, необходимо ввести поправку в значения в рассчитанные для 0,1 МН/м2. Величины  и  берём с графиков (рисунок 3.3 и 3.4)

 = 1,62,  = 1,12.

Наконец, с помощью рисунка 3.5 определяем величину De, используемую для учета излучения в перекрывающихся полосах спектра:


De = 0,005.

Излучательная способность смеси определяется по формуле (3.2):

eсм = 1,62 • 0,15 + 1,12 • 0,125 — 0,005 = 0,378.

Определение поглощательной способности газа несколько сложнее по сравнению с определением e. Используются графики для излучательной способности, описанные выше, однако параметры графиков должны быть модифицированы. Например, рассмотрим водяной пар при температуре , на который падает излучение с поверхности, имеющей температуру Тs. Поглощательную способность Н2О можно приближенно рассчитать по уравнению

, (3.3)

в котором величина  берется с рисунка 3.3, а  — значение излучательной способности водяного пара с рисунка 3.1, определенное при температуре Тs, и при произведении давления на среднюю длину пути луча, равном

.

Значение поглощательной способности СО2 определяется аналогично по уравнению


 (3.4)

где величина  берется с рисунка 3.4, а величина , определяется по рисунку 3.2 при . Для смеси Н2О и СО2 поглощательная способность равна

,

где  и  определяются по уравнениям (3.3) и (3.4) соответственно, а Da = De оценивается по рисунку 3.5 при температуре Ts.

Пример 3.2. Определить поглощательную способность смеси О2 и водяного пара с полным давлением 0,2 МН/м2 и температурой 400 К. Средняя длина пути луча для газов 1,5 м, а падающее излучение испускается поверхностью с температурой 800 К. Парциальное давление Н2О составляет 0,02 МН/м2.

Решение. Считаем, что кислород не поглощает заметного количества падающего излучения и поглощательная способность смеси равна поглощательной способности водяного пара. Поглощательная способность Н2О определяется уравнением (3.3):

Параметры, используемые для определения  и  следующие:

(МН/м2)м,

 = 0,11 (МН/м2)м,

 = 0,06 (МН/м2)м.

По графику с рисунка 3.3 находим

 = 1,45,

а по графику с рисунка 3.1 находим

= 0,33.

Поглощательная способность водяного пара, следовательно, равна

Инженерная формула для расчёта теплообмена между излучающим газом и теплообменной поверхностью имеет вид:

 (3.5)

где  - излучающая способность стенки в присутствии поглощающей среды.

Для замкнутой системы

 (3.6)

поглощающей среды:

 - по справочнику;

 - излучательная способность газа при температуре газа;

 - излучательная способность газа при температуре стенки.


Информация о работе «Виды теплообмена»
Раздел: Физика
Количество знаков с пробелами: 42927
Количество таблиц: 5
Количество изображений: 24

Похожие работы

Скачать
99913
0
0

... івник стає одним з основних теплосприймальних елементів котельного агрегату. Для виготовлення труб-пакетів пароперегрівника, що працюють у дуже важких температурних умовах, застосовуються дорогі леговані сталі. За видом теплообміну пароперегрівники поділяються на конвективні, напіврадіаційні і радіаційні; за розміщенням змійовиків – на вертикальні і горизонтальні. У старих конструкціях котлів ...

Скачать
19216
0
0

... на велику витрату металу на зовнішні труби, що не беруть участь в теплообміні; - трудність очищення міжтрубного простору. 2. Місце і призначення проектованого апарата в технологічній схемі Теплообмінник типу «труба в трубі» використовується в процесі згущення продуктів, що є підготовчим етапом перед висушуванням бульйону. Процес згущення протікає наступним чином: Бульйон всмоктується у вирі ...

Скачать
12809
4
4

... , Х17Н12М2Т. Для виготовлення кришок застосовується двошарові сталі Ст3+10Х18Н10Т та 20К+Х17Н13М2Т та ін. Для виготовлення прокладок застосовують гуму, пароніт, фторопласт, азбестовий картон та ін. Спіральні теплообмінні апарати для рідини складаються із корпуса з тупиковими каналами, двох плоских кришок по торцям із прокладками, чотирьох штуцерів для введення та виведення теплообмінювальних ...

Скачать
20398
0
5

... ее установленную мощность: (37) Рассчитав по формуле (37) количество изделий, необходимо сравнить получающуюся при этом продолжительность нагрева изделий [по формуле (35)] с допустимой по технологии. 3. Особенности нагрева длинномерных изделий в электрических конвекционных печах периодического действия Большое количество различных длинномерных полуфабрикатов (профили, трубы, листы и т. ...

0 комментариев


Наверх