5.4 Определение выходного сигнала по вещественной характеристике при помощи приближенного метода Гиллемина

Метод Гиллемина является одним из методов позволяющих восстановить функцию времени (какой - либо сигнал) по известной вещественной (или мнимой) частотной характеристике. Метод основан на такой аппроксимации, когда аппроксимирующая частотную характеристику функция либо ее производные состоят из последовательности бесконечно коротких импульсов. Последовательность бесконечно коротких импульсов представляет собой заданную функцию в так называемой квантованной форме. Погрешность метода преимущественно связана со ступенчатым характером аппроксимирующей функции. Уменьшение этой погрешности требует увеличения общего числа членов в аппроксимации. Исходная частотная характеристика аппроксимируется кусочнолинейным образом, после чего два последовательных дифференцирования позволяют свести аппроксимирующую функцию к последовательности бесконечно коротких импульсов. Окончательное выражение для искомой функции времени f(t) полученной по вещественной частотной характеристике имеет вид:

 (12)

Здесь ak- величины бесконечно коротких импульсов, wk - координаты импульсов на частотной оси. Вещественная частотная характеристика  может быть определена из соотношений: ; ; , где  - фазо-частотная характеристика цепи,  - фазо-частотная характеристика входного сигнала.

Рисунок 4.8 Аппроксимация вещественной частотной характеристики

Аппроксимация позволяет найти точки , необходимые для записи и построения первой производной вещественной частотной характеристики :

Рисунок 4.9 Первая производная -

На этом шаге уже можно восстановить функцию времени (). Для этого воспользуемся выражением вида:

Аналогично вычисляется вторая производная вещественной частотной характеристики :

Рисунок 4.11 Вторая производная -

Применяя выражение (12), можно восстановить выходной сигнал :

Рисунок 4.12 Аппроксимированный выходной сигнал по


6. Анализ цепи частотным методом при периодическом воздействии

 6.1 Разложение в ряд Фурье заданной периодической функции, определение амплитудного и фазового спектров

Разложение периодической последовательности импульсов может быть осуществлено с учетом очевидной связи комплексной амплитуды гармоники ряда Фурье и спектральной плотности одиночного импульса той же формы . Коэффициенты ряда Фурье могут быть найдены по формуле:

Фазовые коэффициенты  определяются как аргумент комплексного числа :

Результаты вычислений:


Таблица 2.

k, номер гармоники

Амплитуда k - той гармоники

Uок, B

Начальная фаза k - той гармоники ak, рад

1 9.549 -0.524
2 4.775 -2.618
3 0 -
4 2.387 -0.524
5 1.91 -2.618
6 0 -
7 1.364 -0.524
8 1.194 -2.618
9 0 -
10 0.955 -0.524
11 0.868 -2.618
12 0 -
13 0.735 -0.524
14 0.682 -2.618

 

 

Рисунок 5.1 Амплитудный спектр входного сигнала

На рис. 5.1 представлен амплитудный спектр входного сигнала. Огибающая дискретного спектра периодического сигнала совпадает с амплитудно-частотной характеристикой одиночного импульса. При всех частотах  амплитуды спектра периодической функции отличаются от значений спектральной плотности непериодической только постоянным множителем . Увеличение периода следования импульсов ведет к уменьшению расстояния между соседними гармониками амплитудного спектра. При увеличении периода до бесконечности дискретный амплитудный спектр периодической последовательности переходит в непрерывный спектр одиночного импульса. Вид этого спектра наглядно позволяет судить о свойствах периодических функций времени, например, по скорости уменьшения амплитудного спектра можно судить о степени гладкости периодической функции, а по наличию или отсутствию гармоник на высоких частотах – есть ли участки с быстрыми изменениями. Амплитудный спектр является четной функцией частоты, а фазовый – нечетной функцией.

Рисунок 5.2 Фазовый спектр входного сигнала

Таким образом, входной сигнал можно представить как


Информация о работе «Анализ цепи во временной области различными методами»
Раздел: Физика
Количество знаков с пробелами: 22311
Количество таблиц: 6
Количество изображений: 33

Похожие работы

Скачать
20197
1
14

... отношению к малому сигналу НЭ является линейным, но с переменным параметром (в данном случае крутизной ВАХ). Такой режим работы НЭ называется параметрическим. 1. Аппроксимация характеристик нелинейных элементов При анализе нелинейных цепей (НЦ) обычно не рассматривают процессы, происходящие внутри элементов, составляющих эту цепь, а ограничиваются лишь внешними их характеристиками. Обычно это ...

Скачать
68289
11
3

... , т.е. оплату посредников, трудовых арбитров; организуют работу по урегулированию коллективных трудовых споров. Глава 2. Статистический анализ рынка труда Тюменской области за 1997-2001 г.г. 2.1. Статистические методы анализа рынка труда В статистической практике используются различные методы анализа экономических явлений. Некоторые из них мы рассмотрим в ...

Скачать
12567
0
12

... второго порядков, работающие в условиях действия случайных возмущений, и получить аналитические выражения для этих систем, что является его достоинством. На практике используют комбинацию различных методов. Анализ нелинейного режима работы системы ЧАП Для определения некоторых характеристик системы, произведем качественный анализ системы ЧАП (рис.1) Рис.1. Структурная схема нелинейной ...

Скачать
22581
0
9

... диода и повторить п. 1.3. Проанализировать полученные результаты. 1.4. Собрать схему, приведенную на рис. 14, подключив к электрической цепи генератор Sine Source. Выбрать модель генератора – GENERAL и задать следующие параметры для моделирования: F = 1 кГц; A = 10 В; DC = 0; PH = 0; RS = 1 Ом; RP = 0; TAU = 0. Рис. 9 Схема рис. 9 представляет собой простейший однопериодный выпрямитель ...

0 комментариев


Наверх