1. Классификация

В настоящее время известно большое число методов преобразования напряжение-код. Эти методы существенно отличаются друг от друга потенциальной точностью, скоростью преобразования и сложностью аппаратной реализации. На рис. 2 представлена классификация АЦП по методам преобразования.


В основу классификации АЦП положен признак, указывающий на то, как во времени разворачивается процесс преобразования аналоговой величины в цифровую. В основе преобразования выборочных значений сигнала в цифровые эквиваленты лежат операции квантования и кодирования. Они могут осуществляться с помощью либо последовательной, либо параллельной, либо последовательно-параллельной процедур приближения цифрового эквивалента к преобразуемой величине.


2. Параллельные АЦП


АЦП этого типа осуществляют квантование сигнала одновременно с помощью набора компараторов, включенных параллельно источнику входного сигнала. На рис. 3 показана реализация параллельного метода АЦ-преобразования для 3-разрядного числа.

С помощью трех двоичных разрядов можно представить восемь различных чисел, включая нуль. Необходимо, следовательно, семь компараторов. Семь соответствующих эквидистантных опорных напряжений образуются с помощью резистивного делителя.

Если приложенное входное напряжение не выходит за пределы диапазона от 5/2h, до 7/2h, где h=Uоп/7 - квант входного напряжения, соответствующий единице младшего разряда АЦП, то компараторы с 1-го по 3-й устанавливаются в состояние 1, а компараторы с 4-го по 7-й - в состояние 0. Преобразование этой группы кодов в трехзначное двоичное число выполняет логическое устройство, называемое приоритетным шифратором, диаграмма состояний которого приведена в табл.1.

Таблица 1

Входное напряжение Состояние компараторов Выходы

Uвх/h

К7

К6

К5

К4

К3

К2

К1

Q2

Q1

Q0

0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0 0 1
2 0 0 0 0 0 1 1 0 1 0
3 0 0 0 0 1 1 1 0 1 1
4 0 0 0 1 1 1 1 1 0 0
5 0 0 1 1 1 1 1 1 0 1
6 0 1 1 1 1 1 1 1 1 0
7 1 1 1 1 1 1 1 1 1 1

Подключение приоритетного шифратора непосредственно к выходу АЦП может привести к ошибочному результату при считывании выходного кода. Рассмотрим, например переход от трех к четырем, или в двоичном коде от 011 к 100. Если старший разряд вследствие меньшего времени задержки изменит свое состояние раньше других разрядов, то временно на выходе возникнет число 111, т.е. семь. Величина ошибки в этом случае составит половину измеряемого диапазона.

Так как результаты АЦ-преобразования записываются, как правило, в запоминающее устройство, существует вероятность получить полностью неверную величину. Решить эту проблему можно, например, с помощью устройства выборки-хранения (УВХ). Некоторые интегральные микросхемы (ИМС) параллельных АЦП, например МАХ100, снабжаются сверхскоростными УВХ, имеющими время выборки порядка 0,1 нс. Другой путь состоит в использовании кода Грея, характерной особенностью которого является изменение только одной кодовой позиции при переходе от одного кодового значения к другому. Наконец, в некоторых АЦП (например, МАХ1151) для снижения вероятности сбоев при параллельном АЦ-преобразовании используется двухтактный цикл, когда сначала состояния выходов компараторов фиксируются, а затем, после установления состояния приоритетного шифратора, подачей активного фронта на синхровход выходного регистра в него записывают выходное слово АЦП.

Как видно из табл. 1, при увеличении входного сигнала компараторы устанавливаются в состояние 1 по очереди - снизу вверх. Такая очередность не гарантируется при быстром нарастании входного сигнала, так как из-за различия во временах задержки компараторы могут переключаться в другом порядке. Приоритетное кодирование позволяет избежать ошибки, возможной в этом случае, благодаря тому, что единицы в младших разрядах не принимаются во внимание приоритетным шифратором.

Благодаря одновременной работе компараторов параллельный АЦП является самым быстрым. Например, восьмиразрядный преобразователь типа МАХ104 позволяет получить 1 млрд отсчетов в секунду при времени задержки прохождения сигнала не более 1,2 нс. Недостатком этой схемы является высокая сложность. Действительно, N-разрядный параллельный АЦП сдержит 2N-1 компараторов и 2N согласованных резисторов. Следствием этого является высокая стоимость (сотни долларов США) и значительная потребляемая мощность. Тот же МАХ104, например, потребляет около 4 Вт.



Информация о работе «Аналого-цифровые преобразователи»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 48405
Количество таблиц: 2
Количество изображений: 20

Похожие работы

Скачать
19644
5
3

... ів 2001 Техническое задание   Разработать быстродействующтий многоканальный АЦП с управлением от микроконтроллера. АПЗ.38.098424.003 ТЗ Изм Лит № докум Подпись Дата Аналого цифровой преобразователь Техническое задание Лит Лист ...

Скачать
22947
9
0

... пределов допускаемой основной погрешности. 3. УСТРОЙСТВО И РАБОТА МОДУЛЯ ПО СТРУКТУРНОЙ СХЕМЕ. УСТРОЙСТВО И РАБОТА МОДУЛЯ ПО ПРИНЦИПИАЛЬНОЙ СХЕМЕ. Структурная схема стробоскопического аналого – цифрового преобразователя, предназначенного для использования в системах с межмодульным параллельным интерфейсом МПИ представлена на рисунке 3.1. Рис. 3.1. Структурная схема стробоскопического АЦП. ...

Скачать
38623
7
0

... коэффициенты нагрузки или заменить элементную базу на более надежную. При отказе любой из частей модуля АЦП, блок перестает выполнять основные свои функции. Данный модуль является связующим звеном между цифровой и аналоговой частью блока. Модуль АЦП включен последовательно, остальные модули параллельно. При отказе любого из других модулей блок продолжает работу с потерей некоторого количества ...

18945
8
0

... на выходе с 0 на 1.   При изменении состояния битов ACIS1, ACIS0 необходимо запрещать прерывание аналогового компаратора. В противном случае может произойти прерывание. В качестве примера аналого-цифрового преобразования рассматривается программа измерения входного напряжение в режиме однократного преобразования. Преобразование запускается кнопкой. Измеряемое ...

0 комментариев


Наверх