3. Помехоустойчивость ЦРПУ

Восприимчивость цифровых ИМС. Использование сигналов сложной формы, робастных алгоритмов обработки их на фоне комплекса помех, применение принципов адаптации в технике связи базируются на использовании ИМС, МП, средств вычислительной техники (ВТ).

Для цифровых ИМС характерны малая энергия рабочих сигналов (на 40...60 дБ ниже энергии помех), использование в качестве сигналов наносекундных видеоимпульсов и скачков тока или напряжения. Обычно цифровые ИМС взаимосвязаны через шины питания. Поэтому ИРП, возникающие при смене логических состояний ИМС, могут вызывать сбои в работе аппаратуры. Наиболее сильное влияние на ИМС и средства ВТ оказывают перепады напряжения в сети питания.

В соединительных линиях между ЭВМ радиосистем, в состав которых входят РПрУ, наблюдаются случайные потоки импульсов с амплитудой до 10 В, длительностью 60...400 не, частотой следования 50...400 Гц и числом импульсов в пакете до 300. Причинами их служат ИРП, коммутация цепей питания и функциональных элементов системы, неэквипотенциальность точек заземления корпусов отдельных ЭВМ. Внешние высокочастотные магнитные поля также могут вызывать нарушения работы ИМС и мини-ЭВМ. Напряженность таких полей обычно не превышает 0,1 В/м, но в отдельных случаях, например, при грозовых разрядах, может достигать 1...15 А/м. Влияние таких полей проявляется в виде накопления зарядов на диэлектрических носителях информации средств ВТ.

Нормативные параметры ИРП для цифровых элементов и средств вычислительной техники радиоприемной аппаратуры. Нормативная документация по защите цифровых устройств и средств ВТ от ИРП содержит требования к параметрам источников помех, восприимчивости цифровых элементов к кондуктивным и радиационным помехам, рекомендации по обеспечению их ЭМС.

В качестве показателя восприимчивости средств ВТ относительно импульсных ИРП в цепях питания иногда используют величину р(м) =FCQ/Fc,b где FC6 - средняя частота сбоев аппаратуры, вызванных помехами, следующих с частотой Fcn. Однако векторный характер зависимости ft(m) от совокупности т параметров помех затрудняет практическое пользование этим показателем.

К числу нормативных параметров ИРП, значения которых не должны быть превышены в процессе эксплуатации средств ВТ, относятся [7]:

максимальная амплитуда импульсов сетевых помех 100...1000 В при длительности импульсов 100...500 не;

допустимая длительность провалов напряжения питания 5...10 мс для ЭВМ со стабилизированными ВИП и 50...200 мс при бестрансформаторных источниках питания;

пороговая амплитуда перенапряжения питания, составляющая 25...35 % номинального значения при длительности выбросов 100...500 не;

максимальная амплитуда импульсов напряженности внешних электромагнитных полей источника, удаленного на 1 м, при апертуре приемной антенны 1м 1...6 кВ, длительность импульсов 100...500 не.

Среди цифровых ИМС наибольший уровень помех создают ТТЛ-схемы. Образование импульсного тока при переключении схем вызывает импульсное падение напряжения в шинах питания. Высокий уровень помех в шинах питания наблюдается при одновременном срабатывании многих цифровых элементов, например при установке многоразрядных регистров декодеров и др. Такие помехи могут вызывать ложное срабатывание ИМС, искажения информационных сигналов

Защита цифровых и вычислительных устройств радиоприемников от помех. Свойства низкой восприимчивости цифровых устройств РПрУ к внешним помехам и малые уровни создаваемых собственных помех должны закладываться на этапе проектирования, реализовываться в процессе технологической разработки и поддерживаться при техническом обслуживании. Мерами защиты являются высококачественное выполнение внешних соединений, экранирование, сетевая фильтрация, резервирование источников питания.

К внешним соединениям относятся интерфейсные информационные магистрали, линии первичного сетевого питания, соединения между корпусами устройств и шинами ВИП, цепи заземления (металлизации). Качество внешних соединений существенно влияет на восприимчивость к ЭМП и на уровень создаваемых кондуктивных помех. Металлизируемые соединения должны иметь минимальные активное и реактивное сопротивления, а их длина не должна превышать 15 м. В § 8.9 дана характеристика видов систем заземления радиоаппаратуры - сигнального, экранирующего, защитного. Для мини-ЭВМ эти системы редко удается выполнить автономными, и их обычно совмещают. Однако это ухудшает ЭМС радиоаппаратуры, так как протекание возвратных токов создает падение напряжения на активных и индуктивных элементах цепей сигнального заземления, что нарушает эквипотенциальность точек заземления — основного предназначения сигнального заземления. Для микропроцессорных устройств получили распространение унифицированные интерфейсы типа общей шины; при этом блоки аппаратуры соединяются многоканальными двунаправленными магистралями и избежать совмещения цепей сигнального и возвратного заземлений невозможно. Как правило, ЭВМ имеют несколько объектов заземления — корпус, логические устройства, ип, и они должны соединяться между собой только в одной точке - опорном узле. Таких узлов может быть несколько, и сопротивление цепи от опорного узла до физической земли не должно превышать 30 Ом.

Для защиты ИМС и мини-ЭВМ от внешних электромагнитных полей и сетевых помех служат электромагнитные экраны и сетевые помехоподавляющие фильтры (ППФ).


Заключение

 

В данной курсовой работе, в соответствии с заданием, проанализированы цифровые радиоприемные устройства и их функциональные составляющие.

Стремительное развитие микроэлектронной цифровой и аналого-цифровой элементной базы и появление новых компонентов позволяет выполнить высококачественный приёмник на основе цифровых принципов обработки радиосигнала.

К настоящему времени решены далеко не все задачи анализа и синтеза цифровых приемников. Невозможность осветить все разновидности ЦРПУ, различающихся назначением и диапазоном частот, вынуждает рассматривать общие принципы цифровой обработки принимаемых сигналов.

 Одним из основных направлений развития современной авиационной радиоприемной аппаратуры является ее миниатюризация, которая позволяет реализовать нарастающую сложность приемных устройств большой сложности. Переход к интегральным микросхемам дает возможность выиграть в плотности монтажа, а также упростить ЦРПУ за счет уменьшения номенклуатуры комплектующих изделий. При этом улучшаются качественные показатели АРПУ. Происходит переход к индикаторам, которые позволяют потребителю получить полную визуальную информацию о принимаемом сигнале, необходимую для правильной эксплуатации АРПУ.

Из вышеизложенного можно сделать вывод о том, что быстрое развитие цифровой техники и электроники позволяет примерно один раз в 5 - 6 лет разрабатывать новое поколение бортового радиоэлектронного оборудования.


Используемая литература

 

1. К.Е. Румянцев «Прием и обработка сигналов», Москва, 2004г.

2. О.В. Головин «Радиоприемные устройства», Москва, 1997г.

3. В.В. Зеленевский «Проектирование цифровых каналов связи», Серпухов, 1992г.

4. Е.С. Побережский «Цифровые радиоприемные устройства», Москва,1987г.


Информация о работе «Анализ современных цифровых радиоприемных устройств»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 36470
Количество таблиц: 13
Количество изображений: 11

Похожие работы

Скачать
23237
2
0

... Подпись Дата     ЗАКЛЮЧЕНИЕ.   В данном курсовом проекте, в соответствии с заданием, спроектирован радиоканал цифровой радиосвязи с разработкой радиоприемного устройства и с электрическим расчетом усилителя радиочастоты. Проведен энергетический расчет радиоканала. При обосновании и выборе структурной схемы радиоприемника, сделан анализ возможных схем радиоприемника, ...

Скачать
54652
8
24

... частота современных радиовещательных передатчиков поддерживается постоянной с высокой точностью, настройка приемника при помощи синтезатора частот оказывается стабильной. Наиболее распространены в бытовых радиоприемных устройствах цифровые синтезаторы частот с частотной автоподстройкой (ЧАП), работающие по методу косвенного синтеза (3). Структурная схема подобного устройства показана на Рисунок. ...

Скачать
53357
2
20

... сим=()*tg(k*l)/=(7,5/π)* tg(0,837*1,875)/7,5 =8,72*10-3м; Нд несим=0,5*Нд сим=4,36*10-3 м. UД=ЕД*НД=0,0000394*4,36*10-3=1,72*10-6 В Проверено выполнение следующего условия: UДUтр1,72*10-60,21*10-6. Из этого вытекает, что радиоприёмное устройство будет уверенно принимать сигнал. Рассчитано номинальное значение отношения сигнал/шум на входе приёмника:   9(1,72*10-6/0,21*10-6)2 = ...

Скачать
57219
3
2

... и стремительно развивается за счет научно-технических разработок. 1.Факторы, формирующие потребительские свойства и качество РЭА.   1.1 Потребительские свойства радиоэлектронной аппаратуры. а) Функциональные: Общие: 1)Верность воспроизведения звука(характеризует качество звучания и определяется степенью соответствующего звука ,воспроизводимого акустической системой натуральному ...

0 комментариев


Наверх