2. Приемники звука

А) Микрофоны

а) Конденсаторные микрофоны. Для превращения колебаний звука в соответствующие переменные электрические напряжения применяется большое число микрофонов различных типов, которые но принципу действия можно подразделить на электростатические, электродинамические и пьезоэлектрические. Как измерительные приборы до последнего времени чаще всего применяются конденсаторные микрофоны, поскольку при относительно простой конструкции они отличаются постоянством показаний, большой чувствительностью и точной передачей частот и амплитуд. Мембрана конденсаторного микрофона изготовляется чаще всего из алюминиевой фольга, предварительно подвергнутой искусственному старению; мембрана сильно натягивается, чтобы ее собственная частота была высокой. На расстоянии нескольких микрон от нее находится противоположный электрод, благодаря чему система оказывается сильно демпфированной. Для повышения эластичности второй электрод снабжается отверстиями, прорезями и т.п. Микрофоны такого тина изготовляются как приемники давления, приемники скорости, а также как комбинированные приемники давления и скорости. В качестве приемника давления микрофон имеет при низких частотах во всех направлениях равномерную чувствительность. При высоких частотах большая чувствительность имеет место в нормальном направлении — от звука, идущего спереди. Если с помощью приемника давления надо обеспечить ненаправленный прием также и при высоких частотах, то выбирают микрофон весьма малого размера.

б) Направленное действие. В качестве приемника градиента давления микрофон имеет диаграмму направленности в форме цифры, т.е. характеристику, состоящую из двух сфер, которые соприкасаются в плоскости мембраны. Он применяется для приема речи, а также для приема игры оркестра, потому что при этом исполнители размещаются в обеих областях высокой чувствительности. В этом приемнике не наблюдается зависимости частоты от угла, как это имеет место в приемниках давления. Нечувствительностью микрофона в плоскости мембраны пользуются для того, чтобы избежать помех, распространяющихся вблизи этой плоскости. При работе в одном помещении с громкоговорителем плоскость мембраны располагают в направлении на громкоговоритель и благодаря этому избегают акустической обратной связи.

Другой вид приемника этого типа обладает так называемой квадратичной характеристикой, т.е. микрофон обладает повышенной чувствительностью спереди и с боковых сторон, сзади же звук принимается значительно хуже. Этот микрофон удобен для исключения помех, приходящих сзади, для приема звука по определенному, направлению и для работы в одном помещении с громкоговорителями.

в) Схема включения. Конденсаторные микрофоны наиболее широко применяются в так называемых низкочастотных схемах, в которых на микрофон подается напряжение около 100 в через сопротивление в несколько десятков Мом. С нагрузочного сопротивления снимаются переменные напряжения, обусловленные звуковыми волнами. Для достижения качественной передачи независимо от частоты это сопротивление должно быть большим но сравнению с импедансом микрофона. С помощью отрицательной обратной связи за счет сопротивления в катодной цепи лампы усилителя, следующей за микрофоном, получается расширение полосы воспроизводимых частот в направлении нижнего регистра.

В первоначальной схеме микрофон включался в высокочастотный колебательный контур, который имел слабую связь с генератором. Частота контура выбиралась такой, чтобы рабочая точка лежала в середине боковой части резонансной кривой. При приеме микрофоном разговорной речи контур расстраивался, вследствие чего частотная модуляция превращалась в амплитудную. Этот метод может служить для измерения медленных колебаний давления вплоть до нулевой частоты. Об одной схеме такого типа, которая отличается низким уровнем шума, сообщает Заальберг фон Зельст.

Конденсаторный микрофон и первая усилительная лампа располагаются возможно ближе и для снижения уровня фона экранируются общим экраном. Подводка от первого усилителя ко второму, обычно длиной 1 м, также экранируется. Экранирование и правильное согласование выхода лампы с линией, для чего необходим трансформатор с сопротивлением около 200 ом, имеют большое значение. Целесообразно заземлить среднюю точку обмотки трансформатора.

Б) Электродинамические микрофоны

Электродинамические микрофоны из-за их незначительного внутреннего сопротивления можно непосредственно подключать к первой усилительной лампе при помощи длинного экранированного провода. Обычно в корпус микрофона вмонтирован трансформатор, который согласует малое сопротивление катушки микрофона с сопротивлением экранированной линии. Для получения гладкой частотной характеристики за мембраной микрофона делается несколько демпфирующих полостей с различными собственными частотами, которые соединяются друг с другом каналами. Этот микрофон имеет характеристику направленности, подобную характеристике конденсаторного микрофона давления. Выравненную частотную характеристику, имеет также ленточный микрофон, который работает как приемник скорости. На концах свободно подвешенной между полюсами сильною магнита и настроенной на низкую частоту алюминиевой полоски при приеме звука появляются переменные напряжения, которые с помощью трансформатора подводятся к сопротивлению в 200 ом. Для этого микрофона форма диаграммы направленности не зависит от частоты. Прием в плоскости полосок практически невозможен.

В) Кристаллические микрофоны

а) Пьезоэлектрические микрофоны для приема звуковых волн в воздухе в полосе частот слышимых звуков чаще всего изготавливаются из кристаллов сегнетовой соли. Из кристаллов вырезают полоски, которые работают на изгиб. Две такие нары полосок, разделенные дистанционной прокладкой, образуют двойную звуковую ячейку. Емкость такого микрофона равна примерно 1000 пф, так что его можно подключать длинным экранированным проводом ж высокоомному входу усилителя. Микрофон такого тина, особенно хороню оправдавший себя, предложил Ф. Масса: кристаллический микрофон с элементом из фосфата аммония небольшого размера, диаметром 3 мм, был соединен с измерителем звукового давлении и позволял проводить измерения в области частот от 50 гц до 250 гц. Не так давно стали применяться титанаты бария. Эти материалы более устойчивы против действия температуры и влажности, нежели сегнетова соль.

б) Направленное действие. В случаях, когда прием желательно осуществлять только по одному направлению, можно принять следующие меры: микрофон надо поместить в фокус вогнутого зеркала, тогда для всех звуков, длина волн которых мала по сравнению с размерами вогнутого зеркала, будет иметь место направленное действие. Для измерения так называемого направленного рассеяния в объемах при частоте около 2000 гц Р. Тиле использовал параболическое зеркало диаметром 1,2 м. Для той же цели микрофон можно подключать к экспоненциальному рупору. Была предложена еще одна замечательная установка, состоящая из большого числа параллельных, открытых спереди трубок различной длины, которые устанавливаются перед микрофоном. Вследствие интерференции они гасят звуковые волны, падающие со стороны;

Г) Работа на открытом воздухе

Конденсаторные и ленточные микрофоны очень чувствительны к низкочастотным колебаниям давления, которые вызываются ветром, а также к возникающим при ветре завихрениям на корпусе. Поэтому при работе на открытом воздухе эти микрофоны необходимо защищать. Для этого делают шарообразный каркас и обтягивают его звукопроницаемым материалом, например шелком и т.п.; этим можно предохранить микрофон от действия ветра. Однако этот способ защиты при больших скоростях ветра не всегда эффективен. В таких случаях целесообразно поместить микрофон в маленький шар-зонд, который осторожно наполняется воздухом и завязывается поверх подводящего кабеля.

Д) Исследование звукового поля

Для измерения звукового давления применяется диск Релея. Здесь приводятся некоторые указания Беранека относительно веса и размеров диска, полезные при их изготовлении; из покровного стекла: 0,05 г, радиус 0,63 см, толщина 0,016 см, из слюды: 0,006 г, радиус 0,497 см, толщина 0,003 см; из меди: радиус 0,581 см, толщина 0,02 см; из алюминия: радиус 0,5 см, толщина 0,0004 см. Шайба подвешивается на стеклянных или кварцевых нитях, иногда на проволоках из фосфористой бронзы.

Е) Измерение интенсивности ультразвука

Очень простой мерой мощности ультразвуковых колебаний может служить высота фонтанов жидкости, появляющихся над ее поверхностью при работе ультразвуковых генераторов. Для измерения звукового давления, пропорционального квадрату их амплитуды, служит звуковой радиометр. В простейшей форме он состоит из легкой шайбы, подвешенной к крутильным весам. В одном из приборов, работающем по этому принципу, па конце коромысла весов установлена шайба, а на ее поверхности расположено очень большое число маленьких конусов, с помощью которых удается избежать направленного отражения и образования стоячих волн. Движение шайбы под действием звуковых волн передается указателю, который перемещается по шкале, калиброванной в см2. Прибор наполняется водой и через нее приводится в соприкосновение с вибратором, мощность которого измеряется. Баумгарт предложил измеритель давления, который в качестве вращающейся поверхности имеет наполненный воздухом усеченный конус. Звуковые волны, падающие в направлении вершины конуса, отражаются и поглощаются стенками кожуха. Подходящим поглотителем является стеклянная вата. X. Оберет и П. Рикман разработали метод измерения звукового давления, при котором вибратор излучает звук в направлении книзу, в ванну с водой. Звук надает на поплавок с полой конической поверхностью, отражающей звук; благодаря этому поплавок автоматически центрируется па пути звуковых лучей. В нижней его части на стерженьке укреплена шкала, опущенная в тяжелую жидкость, которая предохраняет поплавок от погружения под воду. Если звук падает на поплавок сверху, то он опускается глубже, причем глубина погружения предварительно тарируется; для этого на поплавок кладут последовательно различные гирьки. Для предохранения от циркуляционных потоков между вибратором и отражателем устанавливается наклонно звукопроницаемая алюминиевая фольга.

В случае, когда ультразвук модулируется частотой сети переменного тока, его можно слышать с помощью соответствующего стетоскопа.

Ж) Тепловые действия ультразвука

Для обнаружения изменения ультразвука можно также с успехом использовать его тепловые действия и термоэлемент. Платиновая проволока толщиной в несколько микрон и длиной от 15 до 20 мм предварительно слабо нагревается в схеме мостика Уитстона. Ее присутствие в поле звука не нарушает распространения волн. Для измерения мощности служит аппарат, в котором маленькое вогнутое зеркало концентрирует падающий на него звук в своем фокусе; в этой точке устанавливаются спаи нескольких термопар. Груцмахер использовал тепловой эффект в одном устройстве. Один конец длинного, согнутого под прямым углом стеклянного стержня он ввел в звуковое поле. На другом конце этого стержня был укреплен стеклянный шар, внутренняя полость которого под действием ультразвука нагревалась; это показывал манометр, присоединенный к шару. Линдштрём показал, что для измерения мощности звука можно пользоваться обычным термометром, внося его ртутный шарик в звуковое поле.

Для демонстрационных опытов можно пользоваться чувствительным пламенем. Давление газа должно быть равно примерно 8 м2·. Копчик сопла должен иметь диаметр около 4 мм, но на расстоянии 2 мм от конца он должен конически сужаться до 1,6 мм. Действие ультразвука на биологические объекты см.

3) Ультразвуковые зонды

Для количественных измерений лучшим прибором является пьезоэлектрический приемник, даже по сравнению с конденсаторными микрофонами; в особенности пригодны пьезоэлектрические приборы с твердым диэлектриком, их чувствительность простирается до частот 100 кгц. По данным Кэди, изменяя расстояния между электродом и поверхностью кварца, можно в небольших пределах настраивать кварц на волну генератора звука. Кристаллы как приемники можно сделать очень маленькими, в этом случае - они вызывают лишь незначительное искажение звукового поля. В большинстве случаев целесообразно кристалл монтировать вместе с первой лампой в одном экранированном футляре.

Простые и эффективные ультразвуковые зонды сконструировал Коннельман. Как показано на рис., они состоят из куска шланга, через который протянута проволока, которая лишь немного одним концом погружается в жидкость. На другом ее конце закреплен пьезокристалл, который преобразует получаемые проволокой звуковые колебания в колебания электрического напряжения. Такой же зонд может работать с никелевой проволокой; в нем переменное напряжение получается в катушке. Чтобы получить приемник градиента давления, применяют две проволоки в одном шланге.

И) Ультразвуковой интерферометр

Бергман построил интерферометр с быстрым отсчетом показа-пий, воспользовавшись особым методом. В этом приборе, рефлектор быстро перемещается на заданное расстояние, а число рсп·=' ходящих нрп этом максимумов колебаний отсчитывается электронной декадной счетной лампой. К такому способу необходимо прибегать в тех случаях, когда по скорости распространения делают заключения об изменениях в исследуемой среде при химических реакциях, при быстром изменении температуры и т. п.

К) Поглощение ультразвука

Заслуживают внимания устройства, называемые резонансными поглотителями, которые применяются для поглощения звука в воде. Они заключают в себе воздушные полости, служащие поглощающими резонаторами. Для этого между слоем гладкой резины толщиной 4 мм и толстой железной пластиной прочно укрепляется прокладка с цилиндрическими полостями диаметрами от 5 до 2 мм. Коэффициент поглощения в интервале частот от 9 до 18 кгц равен 99%.

Для облицовки стен бассейнов, для акустических исследований применяются широкополосные поглотители из эластичных пористых материалов. Порам придают остроконечную форму, нем достигается плавный переход от акустического сопротивления воды к акустическому сопротивлению облицовочного слоя.

3. Инфразвук

А) Приемники инфразвука

Очень медленное изменение давления можно обнаружить и измерить с помощью конденсаторного микрофона. Для этого необходимо только следить за тем, чтобы воздух, находящийся в объеме между мембраной и противоположным электродом, не соединялся с наружным воздухом или соединялся с ним только.через очень узкий капилляр. Чтобы можпо было вести измерения до нулевой частоты, применяют схему с несущей частотой. Для наблюдения медленных колебаний типа сотрясений необходим приемник колебаний, распространяющихся в твердых телах, который обычно работает но электродинамическому принципу. С успехом используются также Пьезоэлектрические кристаллы, размер которых может быть очень малым. Так, В. Холле описывает одну предложенную X. Оберстом систему, в корпус которой вделан кристалл фосфата аммония, настроенный на 7,5 KBif и работающий на изгиб.

Современные измерители ускорения с элементами из титаната бария были описаны Брюэлем.

Для регистрации медленных колебаний, например деталей машин, пригодны тензометрические датчики. Провод или лента с большим сопротивлением наклеивается, как показано на рисунке, на бумажную полоску или фольгу из искусственного материала. При деформации полоски, всей плоскостью приклеенной к месту, где ведется измерение, происходит изменение сопротивления проволоки. Датчик включается в мостиковую схему, работающую на несущей частоте.

Б) Калибровка приемников

Для облегчения калибровки электромеханических преобразователей применяется следующий метод: на вибрационном столе рядом с испытываемым преобразователем помещается очень маленький контрольный датчик, обратным воздействием которого на стол, очень малым, можно пренебречь. Сигналами с контрольного датчика после усиления пользуются для управления силовой установкой, приводящей в движение вибрационный стол. Этим обеспечивается постоянство амплитуды колебаний стола в широком диапазоне частот. Можно, следовательно, при непрерывном изменении частоты непосредственно регистрировать постоянную передачи.

4. Помещения, свободные от эха

Если в свободном звуковом поле производятся точные исследования, при которых требуется получить постоянное звуковое давление или снять диаграмму направленности, то необходимо иметь помещения со стенами возможно более сильно поглощающими звук. Для этой цели оказалось целесообразным подвесить перпендикулярно к стенам на небольшом расстоянии друг от друга ватные полосы, а между ними и стеной проложить еще слой ваты. Из соображений пожарной безопасности вата должна быть огнестойкой. В помещении натягивается сетка для хождения, так как пол также должен быть звукопоглощающим. Целесообразно также туго натянуть сетку из стальной проволоки, на которую можно установить измерительные приборы. Более эффективными, чем ватные полосы, оказываются конусы из звукопоглощающих материалов, угол конусности которых выбирается так, чтобы падающие звуковые волны на противоположной стороне конуса снова отражались; постепенно при многократном отражении с большиши потерями волны заглушаются. Так как поглощение на поверхности особенно эффективно только при высоких частотах, тс* позади конусов устанавливают дополнительно резонаторы, гасящие звук низких частот; таким путем достигается равномерное; поглощение во всей области слышимости.

5. Аудиометр

Определение порога слышимости на различных частотах для наблюдателя и исследуемого субъекта связано с рядом трудностей. Для их устранения Бекеши разработал аппарат, позволяющий исследуемому субъекту проверять самого себя. Интенсивность звучания тонов он регулирует кнопкой. Частота тонов медленно меняется, и наблюдатель все время находится на границе слышимости и неслышимости. Построенный по этому принципу прибор описан Кайзером. Мраз и Дистель изобрели аудиометр нового типа, в котором сила звука регулируется не механическим переключателем логарифмического ступенчатого потенциометра, а при помощи электронной схемы. Это сильно упрощает обращение C прибором и устраняет потрескивание при переключении.


Информация о работе «Акустические приборы»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 37561
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
26891
0
1

... напичканные современным высокотехнологичным оборудованием, которые помогут ученым разобраться в океанском многоголосии. Именно военные специалисты подтолкнули гражданских технарей к созданию проекта глобального акустического мониторинга Мирового океана. Стратегическую систему звукового контроля, состоявшую из цепочки подводных гидрофонов, впоследствии перенацелили для решения мирных задач. Этот ...

Скачать
72188
6
20

... является измерение сдвига частоты. То есть в качестве сенсорного эффекта в данном типе датчиков используется различие рабочих частот поверхностно-акустической волны прибора в различных средах. Некоторые задачи, решаемые ПАВ сенсорами В работе [6] авторами решена задача классификации ароматов и определения степени свежести пищевых продуктов по запаху с использованием аналитической микросхемы, ...

Скачать
75193
5
20

... можно пренебречь. А основное время процесса будет состоять из времени определения частоты поверхностно-акустической волны, времени подвода газа необходимой концентрации и пр. Таким образом, получаем еще одно подтверждение необходимости дальнейшего повышения автоматизации измерительной установки. Для математического получения градуировочной характеристики ПАВ датчика воспользуемся уравнением [20]: ...

Скачать
116334
8
11

... в корпусе датчика (9). С задней стороны корпуса прикручивается крышка (10) с разъемом (11) SKINTOP MS, через который проходит сигнальный кабель (12) для соединения датчика с прибором для измерения скорости кровотока. Для уменьшения потери энергии ультразвукового колебания при излучении в исследуемую среду используется промежуточная среда, заполненная акустически прозрачной жидкостью (13), в ...

0 комментариев


Наверх