3. Аэродинамические проблемы эксплуатации пылеуловителей

В производстве огнеупоров пылеулавливание является неотъемлемой частью технологического процесса, так как сырьевые материалы при их переработке находятся во взвешенном состоянии и необходимо максимальное извлечение их из газовой среды.

Поэтому должно быть обеспечено эффективное пылеулавливание не только по санитарным, но и по технологическим соображениям. Выбор схемы начинается с анализа исходных данных. Физико-химические свойства газов и пыли позволяют выбрать дополнительные устройства, тягодутьевое оборудование и конструкционные материалы для изготовления аппаратов и газораспределительных устройств.

После оценки гидравлического сопротивления и ожидаемой эффективности выбранных аппаратов формулируют дополнительные требования к газораспределительным устройствам.

В табл. 3.1 приведены ориентировочные сводные данные об эффективности различных пылеуловителей, используемых в огнеупорной промышленности.


Таблица 3.1

Ориентировочная эффективность различных пылеуловителей в огнеупорном производстве

При выборе аппаратов, указанных в табл. 3.1, учитывают и аутогезионные свойства пыли, чтобы исключить залипание рабочих элементов (рукавов, осадительных и коронирующих электродов), коммуникаций, дополнительного оборудования и транспортных приспособлений. Абразивные пыли приводят к истиранию рабочих поверхностей, что вызывает перераспределение скоростей пылегазового потока в рабочем сечении аппарата и резкое ухудшение аэродинамических условий разделения газовой гетерогенной системы с твердой дисперсной фазой, приводящее к снижению эффективности пылеуловителя.

Таким образом, разработка способов оптимизации аэродинамических условий эксплуатации систем пылеулавливания, что является предметом настоящей работы, является непременным условием обеспечения их эффективности.

С учетом современных тенденций [6] эта задача актуальна для фильтрующих и других аппаратов полочного типа с насыпными слоями зернистых (кусковых) тел, для аппаратов радиального типас прохождением потока через боковую проницаемую поверхность, состоящую из слоя сыпучих или цементированных тел, ткани, волокон, различной набивки, сеток, решеток и т.п., для коллекторных систем с равномерной раздачей потока и, конечно, для электрофильтров с их исключительным разнообразием условий подвода пылегазового потока.

Поэтому особый интерес представляет анализ механизма растекания пылегазового потока по распределительным устройствам.

Во многих случаях выравнивание потока может быть достигнуто с помощью специальных направляющих устройств (лопатки, разделительные стенки и пр.)

Выравнивание потока может быть осуществлено также с помощью сопротивлений, рассредоточенных по сечению. В качестве таких сопротивлений используют различные виды решеток или сеток, насыпные слои кускового или сыпучего материала и др.

Квалифицируя зернистые слои как весьма перспективные способы пылеулавливания в огнеупорном производстве, рассмотрим схему протекания пылегазового потока через такие слои, как это показано на рис. 3.1 [7].

При толщине слоя с коэффициентом сопротивления, соответствующим оптимальному значению (рис. 3.1, а), пылегазовый поток, набегая узкой струей, постепенно растекается от сечения к сечению и за слоем устанавливается наиболее равномерное поле скоростей. С увеличением толщины слоя, а следовательно, и значения степень растекания перед фронтом слоя будет возрастать до тех пор, пока узкая струя, набегающая на слой, не станет растекаться по его фронту полностью (рис. 3.1, б). Это растекание происходит так, что периферийная часть струи устремляется к стенке канала почти параллельно фронту слоя. В результате в первых внутренних сечениях слоя профиль скорости становится неравномерным с повышенными значениями в центральной и пристенной областях (рис. 3.1, б и в). В следующих сечениях слоя характер профиля скорости будет меняться под влиянием многих факторов, одним из которых является пристенный эффект. При этом в зависимости от формы, шероховатости и других особенностей частиц (зёрен) слоя влияние стенки сказывается либо на очень узкую область сечения (0,5 - 5,0) d3, либо на широкую (несколько десятков диаметров зёрен). Наибольшая проницаемость слоя получается у самой стенки (ε ≈ 1).

Повышенная проницаемость слоя вблизи стенки аппарата обусловлена и частицами слоя [8]. Переменная по сечению пористость обусловливает переменное сопротивление и приводит к перетеканию части газа из центральной области к периферии. При этом скорости в центральной области уменьшаются, а в пристенной еще более возрастают, и на выходе из слоя устанавливается профиль скорости вогнутой формы с резко повышенной скоростью у стенки.

Форма профиля скорости 2, показанная на рис. 3.1, б, будет иметь место только в том случае, когда упаковка слоя остается неизменной после его засыпки. Если в процессе эксплуатации под действием тех или иных факторов первоначальная упаковка и проницаемость слоя будут изменены, то распределение потока в нем получится еще более неравномерным (рис. 3.1, в). Если поток движется в аппарате сверху вниз и проходит слой, лежащий на сетке или перфорированном листе (решетке), то не исключена возможность полного или частичного перекрытия частицами слоя проходных отверстий сетки или решетки. Тогда возникает дополнительная неоднородность слоя [9].

Все эти факторы создадут аналогичную неравномерность распределения скоростей в слое также и при набегании на него потока полным сечением (см. рис. 3.1, г).

При указанных условиях в сечениях за слоем профиль скорости будет дополнительно деформироваться еще и вследствие эффекта подсасывания. Поэтому профили скорости, измеренные за слоем, не будут точно отражать истинного распределения скоростей внутри слоя (см. кривые 2 и 3, рис. 3.1, б и г).

Для устранения или уменьшения влияния пристенного эффекта на протекание жидкости через насыпной слой можно разделить поперечное сечение перфорированными листами или сетками 4 (см. рис. 3.1, д) переменного живого сечения. Это приведет к увеличению сопротивления вблизи стенки и к устранению возникающей неравномерности распределения скоростей. Перетекание жидкости к стенке можно предотвратить вертикальными перегородками 5, установленными вдоль слоя (см. рис.3.1,е).

Эффективным и простым способом уменьшения пристенного эффекта может быть установка узких колец на определенном расстоянии одно от другого вдоль слоя. Такие кольца увеличат сопротивление проходу газа через пристенные каналы и уменьшат возможность перетекания ее к стенкам аппарата.

Исследования аэродинамики зернистых слоев, расположенных на различном расстоянии от центрального входа струи [12], показали, что с ростом значений Re неравномерность распределения скоростей уменьшается. Практический интерес представляет качественная и количественная оценка пристеночного эффекта, являющегося источником существенной неравномерности поля скоростей. Отмечается [13] несимметричный профиль и резкое повышение скоростей и массовой концентрации дисперсной фазы в пристеночной зоне, возрастающее с уменьшением комплекса Dслоя/d3.В [14] обсуждается влияние шероховатости стенок на потери напора и распределение скоростей при фильтровании воздуха через неподвижные и движущиеся зернистые слои; отмечается снижение перепада давлений в цилиндрическом аппарате при переходе от неподвижного к движущемуся слою с одновременным увеличением пристеночного эффекта.

Очень показательны результаты опытов по выявлению характера зависимости wi/wK = φ(y/Re) за слоевой насадкой с диаметром зерна d3 от 0,6 до 25 мм при 177 < Re < 2850 [7].

С уменьшением диаметра зерен и резким увеличением ξсл коэффициент сопротивления проходных каналов у самой стенки ξкан меняется незначительно, так как сопротивление трения на самой стенке не зависит от d3. Это и приводит к резкому возрастанию степени перетекания газа к стенке при понижении Re с уменьшением d3 [15].

Рис. 3.1. Схема протекания потока через насыпной слой [7]:

а – узкая струя, слой с оптимальным коэффициентом сопротивления  (ξсл= ξопт); б – то же, ξсл > ξопт и при влиянии только стенки аппарата; в – то же, при дополнительном влиянии неоднородности слоя; г – однородный поток, влияние стенки аппарата; д – с решетками переменного сопротивления; е – с продольными разделительными стенками; 1 – зона, не продуваемая потоком, или со сниженными скоростями; 2 – примерный профиль скорости непосредственно на выходе из слоя; 3 – то же, на небольшом расстоянии за ним; 4 – решетка; 5 – продольная стенка; 6 – профиль скорости внутри слоя; 7 – кольцевое ребро.

В методическом плане исследования аэродинамики зернистых слоев требуют определения степени неравномерности распределения пористости в зернистых фильтрующих слоях насыпного или связанного типа. Для решения этой задачи применяют традиционные способы – микрофотографию, жидкостную порометрию отдельных образцов под вакуумом или давлением, наполнение пор отдельных образцов люминофором и регистрацию яркости свечения люминофора после облучения образца источником ультрафиолетового света, анализ локальной пористости путем измерения расхода газа через небольшие площади пористой поверхности с последующим использованием для расчета кинетических закономерностей Дарси, гидростатическое взвешивание отдельных частей образца, электромагнитную дефектоскопию [10].

Вышеуказанные методы не позволяют измерять пористость непосредственно при эксплуатации, связаны с нарушением структуры образца, например, при гидростатическом взвешивании, и отличаются относительной сложностью оборудования.

Свободный от этих недостатков магнитоэлектрический дефектоскоп неприменим для немагнитных зернистых фильтрующих слоев.

К сожалению, сведения о совместном влиянии геометрической формы и гранулометрического состава фильтровальных элементов из пористых материалов на неравность распределения пор неполны и противоречивы.

Особый интерес представляет определение профиля скоростей в слое насыпного материала, позволяющее судить о степени неравномерности пористости.

Непосредственное измерение скоростей в слое трубками Прандтля здесь неприменимо даже при использовании самых миниатюрных датчиков динамического напора, так как вектор скорости потока меняет свое направление от нуля у поверхности зерна до максимальной величины в средней части просвета между зернами.

По-видимому, наиболее надежные результаты можно получить, измерив значения локальной скорости w непосредственно на выходе потока из слоя.

Необходимо отметить оригинальные, получившие широкую известность [11] методики косвенного измерения локальной скорости внутри зернистого слоя, основанные на продвижении фронта сорбции в слое или на оценке интенсивности массоотдачи от поверхности одиночных, медленно испаряющихся зерен (нафталина), заложенных в различных участках слоя.

Нетрудно заметить, что описанные методики достаточно трудоемки, предпочтительная область их применения ограничена лабораторными условиями и узким температурным диапазоном, и поэтому применение их для целей экспресс-анализа в производственных условиях недостаточно перспективно.

Решение аэродинамических аспектов повышения эффективности пылеуловителей связано с анализом механизма растекания потока по плоской (тонкостенной) распределительной решетке.

Плоские (тонкостенные) решетки обладают специфической особенностью, заключающейся в том, что при достижении определенных значений коэффициента сопротивления эти решетки усиливают неравномерность потока за ними, придавая профилю скорости характер, прямо противоположный характеру распределения скоростей перед ними.

Растекание струи до бесконечности возможно только при установке решетки в неограниченном пространстве (рис.3.2, а). Если решетка находится в трубе (канале) конечных размеров (рис. 3.2, б), структура потока за ней будет иная. Так, например, в случае центрального (фронтального) набегания жидкости на решетку в виде узкой струи, последняя, растекаясь радиально и достигая за решеткой стенок трубы (канала), неизбежно изменит свое направление на 90° и дальше будет перемещаться вдоль стенок в виде кольцевой струи. В условиях реальной среды, вследствие турбулентного перемешивания, газ, подходя к стенкам трубы (канала), будет увлекать за собой неподвижную часть газа из центральной части сечения. На освободившееся место из более удаленных от решетки сечений будут поступать другие массы жидкости, и в центральной части сечений за решеткой возникнут обратные токи, а профиль скорости за решеткой будет иметь "перевернутую" форму (см. рис. 3.2, б). На рис 3.3. представлена схема потока и поля скоростей в пылеуловителях при центральном симметричном входе вверх.

"Перевернутый" профиль скорости за решеткой должен возникать и при не очень больших значениях коэффициента сопротивления решетки (ζр> ζкр), но при этом в центральной части сечения еще будут иметь место положительные скорости (рис.3.3, в).

Дальнейшее увеличение коэффициента сопротивления решетки должно привести к тому, что перетекание жидкости к стенкам трубы (канала) будет усиливаться, образующаяся при этом кольцевая струя будет все больше поджиматься, скорость ее возрастет, а зона обратных токов соответственно расширится. При больших значениях 5 в аппаратах с большим отношением площадей Fk/Fo плоская решетка принципиально не может обеспечить равномерное распределение скоростей в сечениях на конечном расстоянии за ней.

При боковом набегании струи поток по инерции будет устремляться по оси входа вперед, пока не достигнет противоположной стенки (рис.3.4, а).

Затем струя будет растекаться по стенке во все стороны. При этом часть потока возвратится в нижнюю зону аппарата, возмещая ту часть, которая подсасывается струей. Полное выравнивание потока по сечению произойдет на сравнительно большом расстоянии от входа.

Если на пути потока (рис.3.4, б) установить решетку, то струя, набегая на нее со стороны задней стенки аппарата, начнет по ней растекаться в сторону передней стенки (входного отверстия). Вследствие турбулентного перемешивания с окружающей средой профиль скорости за плоской решеткой при боковом входе в аппарат получится "перевернутым".

Рис. 3.2. Схема набегания на решетку узкой струи [7]:

а – в неограниченном пространстве; б – в трубе (канале)

Рис. 3.3. Схема потока и поле скоростей в аппарате при центральном симметричном входе вверх

а – без решетки; б – с плоской решеткой ξр ≥ ξкр; в – с плоской решеткой ξр < ξкр; г – со спрямляющим устройством; д – поле скоростей в отверстиях плоской решетки с большим значением ξр.


Если растекание струек вдоль поверхности решетки при выходе из ее отверстий устранить установкой направляющих пластин, то "перевертывания" профиля скорости не произойдет, и при достаточно большом значении коэффициента сопротивления решетки установится равномерное распределение скоростей (рис.3.4, в). При близком расположении решетки относительно потока струйки, вытекающие из отверстий плоской решетки, будут иметь то же направление, что и струя на входе в аппарат, вследствие чего при достаточно больших значениях ζр решетки жидкость за ней будет перетекать к задней стенке, и вблизи нее скорость струек будет минимальной (рис.3.4,г).

Рис. 3.4. Схема потока в аппарате при боковом входе:

а – без решетки; б – с плоской решеткой с очень большим значением ξр на большом удалении ее от входного отверстия (Hp/DK > 0,14÷0,15); в – с плоской решеткой с большим значением ξр и с спрямляющим устройством за ней (Hp/DK > 0,14); г – с плоской решеткой при Hp/DK = 0; д – с плоской решеткой на оптимальном расстоянии от входного отверстия [(Hp/DK)опт = 0,1÷0,14].

Поток в аппарат может быть введен противоположно направлению потока в рабочей камере, например, через подводящий участок в виде отвода или колена с выходным отверстием, повернутым вниз. В этом случае струя на входе в аппарат направлена к днищу (или на специальный экран), по которому растекается радиально. Поток, поворачиваясь вдоль стенок аппарата на 180°, пойдет вверх в виде кольцевой струи. Поэтому в случае центрального подвода жидкости, направленного к низу аппарата, когда образуется кольцевая струя, будет обеспечено значительное растекание ее по сечению уже на подходе к рабочей камере даже без каких-либо распределительных устройств.

Поскольку одна плоская решетка без дополнительных устройств не всегда эффективна при использовании ее в качестве распределительного устройства, возникает необходимость в других способах выравнивания потока. Одним из способов является последовательная установка системы плоских решеток, каждая из которых имеет меньший коэффициент сопротивления, чем необходимый коэффициент сопротивления при одной решетке. Результаты выполненного анализа механизма растекания пылегазового потока по распределительным устройствам использованы в дальнейшем для оптимизации аэродинамических условий эксплуатации пылеуловителей.


Информация о работе «Аэродинамические способы повышения эффективности систем пылеулавливания в химической промышленности»
Раздел: Промышленность, производство
Количество знаков с пробелами: 49862
Количество таблиц: 3
Количество изображений: 14

Похожие работы

Скачать
74414
5
0

... Не допуск 200 5 не более Не более, чем на 30 исх. воды 4 Вода для ГВС 50 Т75 100 Не допуск   2. Специальная часть   2.1 Расчет топлива и продуктов сгорания за котлом ТВГ-8М   Элементарный состав рабочей массы топлива, % Метан СН4=92,8 Двуокись углерода СО2=0,1 Этан С2Н6=3,9 Сероводород Н2S=0 Пропан С3Н8=1,0 Кислород О2=0 Бутан ...

Скачать
55836
0
17

... со стальным корпусом цилиндрической формы. Осадительные электроды трубчатой формы. Электрофильтры изготавливают двух типоразмеров с активным сечением 5 и 7,2 м2. Электрофильтр ПГ-8 предназначен для очистки от пыли и смолы газов, образующихся при газификации углей; для очистки газов, используемых в газовых турбинах, для синтеза аммиака, спиртов, обогрева коксовых печей и др. Электрофильтр ...

Скачать
207002
27
15

... концентрация пыли в выбросах цеха снизится и будет находится в пределах показателя ПДВ или будет превышать его незначительно. 6.3 Описание технологической схемы очистки выбросов цеха литья пластмасс В цехе литья пластмасс основными источниками загрязнения атмосферного воздуха являются термопластавтоматы в количестве 12 штук и сушильные шкафы, в которых ведется подготовка материала к ...

Скачать
82290
4
2

... волокно цемент, оливин, апатит, фостерит 1 2 4 6 1 6 2 6 4 6 6 3 4 4 4 4 3 4 4 4 4 4 1.4 Основные направления и перспективы борьбы с загрязнением атмосферы предприятиями строительной индустрии Дальнейшее сокращение вредных выбросов предприятиями строительной индустрии может быть достигнуто в результате создания и внедрения технологических процессов и ...

0 комментариев


Наверх