3.2. Выбор конструкции скважины

Геологическая служба предприятия обуславливает диаметр эксплуата-ционной колонны. Диаметры обсадных колонн, глубины спуска которых определены согласно рис. 1, рассчитывают снизу вверх. Соотношение меж-ду диаметрами эксплуатационной колонны и долота выбираются по данным показанным на рисунке 4 и формулам.

Рисунок 4

Затем подбирают промежуточную колонну, исходя из диаметра долота под эксплуатационную колонну. Подбор остальных промежуточных колонн и кондуктора, а также долот проводят аналогично.

Расчёт конструкции скважины Для глубоких скважин после определения конструкции проводят проверочный расчёт обсадных труб на прочность. Определив минимально необходимые толщины стенок труб промежуточных колонн, задаются величиной абсолютного износа труб и проверяют их на механический износ в процессе бурения и СПО под следующую колонну по специальной методике. А именно, все ОК, спускаемые в искривлённые участки ствола скважины, проверяются на проходимость в этих участках.

Минимальные диаметры УБТ наддолотного комплекса, обеспечивающие успешный спуск обсадных колонн в скважину, приведены на рис. 5.

Жёсткость УБТ, обеспечивающая успешный спуск ОК должна быть > 1.

Рисунок 5

3.3. Выбор профиля скважины

При необходимости проводки наклонной скважины с заданным геологической службой предприятия отходом от вертикали А технологическая служба выбирает профиль (рис. 6), основываясь на её расчётной конструкции, технических возможностей предприятия, квалификации и опыте исполнителей, достигнутом технологическом уровне бурения в данном регионе. При выборе профиля необходимо учитывать естественное искривление скважин в азимутной плоскости, имеющееся на данном месторождении. В случае дальнейшей эксплуатации скважин штанговыми насосами градиент кривизны ствола в интервале под насосом не должен превышать 0,5 градуса на 10 м во избежание протирания труб и поломки штанг.

После выбора профиля устанавливают глубину и её характерные точки по инструменту, рассчитывают траекторию ствола, компоновки для бурения вертикальных, наклонных и кривых участков. Траекторию ствола определяют практически методом подбора, задаваясь градиентами набора и спада кривизны, а также максимальным углом наклона.

1 2 3 4 5 6

Расчёт конструкции скважины

Расчёт конструкции скважины 

Расчёт конструкции скважины

А

Расчёт конструкции скважины

Рисунок 6. Типы профилей наклонных скважин с отходом от вертикали А:

1– двухинтервальный; 2, 5 – трёхинтервальный; 3, 6 – четырёхинтервальный;

4 – пятиинтервальный.

3.4. Выбор типа шарошечного долота

Рациональное сочетание типа шарошечного долота и разбуриваемой породы показано ниже.

Диаметр насадок Dн шарошечных долот выбирают по номограмме (рис. 7).

Рисунок 7: Номограмма определения диаметра насадок для получения гидромониторного эффекта

4. Породоразрушающий инструмент. Долота

Породоразрушающий инструмент предназначен для передачи энергии горной породе с целью ее разрушения. Эффективность разрушения породы зависит от ее механических свойств и характера воздействия породораз-рушающего инструмента. Приведём здесь классификация породоразру-шающего инструмента по превалирующему механизму разрушения горной породы:

- режущего и режуще-скалывающего действия,

- скалывающего и дробяще-скалывающего,

- дробящего;

- истирающего действия.

По назначению:

- инструмент для сплошного бурения (бурение без отбора керна). Разрушает горную породу по всему забою и предназначен для проходки ствола скважины. Инструмент, принадлежащий к этой группе, обычно называют долотом;

- инструмент для бурения с отбором керна (колонковое бурение). Горная порода разрушается по кольцевому забою. В осевой части забоя формируется керн - целик породы в виде колонки, который извлекают на поверхность. В зависимости от конструктивных особенностей различают коронки и бурильные головки;

- инструмент (долота) специального назначения. Применяют для разбуривания цементных стаканов в обсадных колоннах, искривления скважин, разрушения попавших на забой посторонних металлических предметов, расширения ствола скважины и выполнения различных вспомогательных работ.

По конструкции:

- опорный (шарошечный). Имеет опору, на которой закреплена шарошка, независимо вращающаяся во время вращения долота по забою. Опора может быть герметизированной (современные конструкции долот) и негерметизи-рованной. Шарошка имеет породоразрушающие элементы - зубья (литые, кованные или фрезерованные) или твердые зубки(штыри). Шарошек может быть несколько, как правило, три.

- безопорный. Имеет лопасти или матрицу, составляющие с корпусом одно целое (лопастной, истирающе-режущий, алмазный инструмент). На лопастях или матрице закреплены породоразрушающие элементы.

По конструкции системы промывки:

- с центральной промывкой;

- с периферийной промывкой, в том числе гидромониторной.

Долота

Долота лопастные

Лопастное долото в качестве рабочего элемента имеет лопасти, которые изготовляют либо с корпусом, либо приваривают к корпусу. Лопастные долота относятся к инструменту режущего или режуще-скалывающего действия. Они предназначены для бурения в породах мягких и отчасти средней твердости. Производят двух- и трехлопастные долота:

двухлопастные диаметрами от 76,0 до 165,1 мм и трехлопастные – от 120,6 до 469,9 мм. Простейшим по конструкции является двухлопастное долото. Оно состоит из корпуса и двух лопастей, в головке корпуса имеется присоединительная резьба, а в нижней части ближе к лопасти расположены каналы для подачи промывочной жидкости к забою. У гидромониторных долот в каналах устанавливают насадки для формирования высокоско-ростной струи промывочной жидкости. На эффективность работы долота наиболее существенное влияние оказывают профиль лопасти долота и правильный подбор его конструкции по свойствам проходимых горных пород.

Долота истирающе-режущие (ДИР)

Истирающе-режущие долота относятся к лопастным, но отличаются наличием разновысоких лопастей, армированных мелкими твердосплавными резцами. Такое долото формирует ступенчатый забой и в зависимости от свойств проходимых пород может работать как режущее долото - по всей длине лопасти снимать слой с забоя, или как истирающее - каждый мелкий резец обособленно взаимодействует с забоем и скалывает очень мелкие частицы горной породы.

Долота шарошечные

Шарошечным долотом называется породоразрушающий инструмент, у которого основным рабочим органом является шарошка. Наиболее распро-странены трехшарошечные долота; одно- и двухшарошечные долота производят в ограниченном количестве. Каждая шарошка снабжена множеством породоразрушающих элементов, которые располагаются венцами. Вращение корпуса преобразуется во вращательное движение шарошек вокруг их оси. В результате происходит поражение забоя породоразрушающими элементами, периодически вступающими с ним в контакт. Венцы соседних шарошек расположены таким образом, что разрушают породу по всей поверхности забоя. Применяют два способа оснащения шарошек породоразрушающими элементами:

· фрезерование зубьев из тела шарошки с последующей наплавкой твердого сплава;

· установка твердосплавных зубков (штырей) в гнезда методом холодного прессования.

Изготавливают шарошечные долота 39 номинальных диаметров – от 46 до 508 мм.

Долота алмазные

Алмазное долото – это разновидность породоразрушающего инструмента, у которого в качестве породоразрушающих элементов используются алмазные зерна. Алмазные долота оснащаются в основном достаточно крупными алмазами – от 2 до 15 зерен/кар. Размер зерен подбирают в зависимости от твердости пород и места размещения алмазов на рабочей поверхности долота. С повышением твердости пород размер зерен уменьшают. Конструктивно состоит из корпуса с присоединительной резьбой и твердой матрицы с алмазными зернами. Матрицу изготовляют из сплава кобальта, никеля, вольфрама, карбида вольфрама, алюминия, меди. Состав сплава подбирают таким образом, чтобы выдерживалась опреде-ленная твердость материала, которая обеспечивала бы постепенный износ матрицы при работе долота и обнажение алмазных зерен для работы.

Тип алмазного долота определяется формой торцовой части (спиральная, радиальная, ступенчатая с торовидными выступами) и конструкцией промывочных каналов. Форма рабочей поверхности алмазного долота зависит от условий бурения.

К алмазным долотам могут быть отнесены долота типа ИСМ, созданные на базе сверхтвердого материала “славутич”. Представляют собой твердо-сплавную матрицу, насыщенную очень мелкими синтетическими алмазами.

Алмазные долота типа АТП оснащены алмазно-твердосплавной пластиной.

Породоразрушающий инструмент для отбора керна

Колонковое бурение имеет целью получение из скважины образцов горных пород (керн). Керн формируется на забое скважины в процессе ее углубления с помощью породоразрушающего инструмента, который разрушает горную породу лишь по кольцевому забою и оставляет в центре нетронутый целик породы (колонку). При этом должно обеспечиваться не только эффективное разрушение породы на забое, но и сохранность керна при его формировании и поступлении в керноприемную трубу. Отбор керна возможен при всех способах бурения. Применяют коронки и бурильные головки. Буровая коронка представляет собой кольцо с присоединительной резьбой, у которого резцы располагаются на нижнем торце и боковых повер-хностях. В глубоком бурении они практически не используются.

При бурении скважин на нефть и газ используют колонковые наборы, состоящие из бурильной головки, корпуса и керноприемной трубы. Бурильная головка, разрушая породу по периферии забоя, оставляет в забоя колонку породы (керн), поступающую по мере углубления скважины в керноприемную трубу. Корпус колонкового набора служит для соединения бурильной головки с бурильной колонной, размещения керноприемной трубы и защиты ее от механических повреждений, а также для пропуска ПЖ между ним и керноприемной трубой. Керноприемная труба предназначена для приема керна, сохранения его во время бурения и при подъеме на поверхность. Для выполнения этих функций в нижней части керноприемной трубы размещены кернорватели и кернодержатели, а вверху - шаровой клапан для пропуска вытесняемой из керноприемной трубы жидкости по мере заполнения ее керном. Керноприемная труба в корпусе колонкового набора может быть вращающейся и невращающейся, со съемной и несъем-


Информация о работе «Расчёт конструкции скважины»
Раздел: География
Количество знаков с пробелами: 17758
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
67756
33
11

... 2750 2750 2750 2750 Примечание: *) исследования проводятся в одной субвертикальной скважине куста; **) возможна запись ВИКИЗ. 2. ТЕХНОЛОГИЯ СТРОИТЕЛЬСТВА СКВАЖИНЫ 2.1 Проектирование профиля скважины Исходные данные: 1. Глубина скважины по вертикале (Н), м 2750 2. Отход (А), м 1500 3. Длина вертикального участка (h1), м 200 4. Глубина спуска кондуктора (L), м 650 Способ бурения – турбинный ...

Скачать
46962
9
8

... все работы по вызову притока, дренированию пласта, гидродинамическим исследованиям, обработке призабойной зоны и повторному дренированию пласта рекомендуется проводить через УГИС, спущенный в скважину сразу же после заканчивания строительства скважины. При этом работы по свабированию отпадают, так как вызов притока и дренирование пласта осуществляются с помощью струйного насоса. По итогам работы ...

Скачать
245136
36
9

... . Необходимость в цементировании "хвостовиков" или секций обсадных колонн возникает, если в конструкции скважины предусмотрен спуск колонны в виде "хвостовиков" или секций [2]. Выбираем простейший, наиболее технологичный и распространенный на данном месторождении и в Западной Сибири способ прямого цементирования, который предполагает доставку тампонажной смеси в затрубное пространство через ...

Скачать
48875
12
9

... L L0 h hкэ hпп роп рж рцр  роцр  рн H1 H2 Pоп Рпл 2700 750 440 1200 2590 1.00 1.2 1.83 1.48 0.84 680 1580 12,5 26,7 Для качественного крепления обсадной колонны выбираем портландцемент ПЦТ-100, процесс цементирования производится в одну ступень. Определяем водоцементное отношение для облегченного цементного раствора и для цементного раствора по формуле: ...

0 комментариев


Наверх