1.2.9 Определение типов и числа контуров тракта промежуточной частоты.

Группа сложности приёмника АМ тракт
Тип А3 Селективная система
Преобра- зователь УПЧ-1

УПЧ

Оконе- чное

высшая

ПТ

БПТ

ФСС-3,4

ПКФ

К

К

К

Р

ДКС

К

К

ДПФ

ФСС-3,4

ДПФ: К

К

ИС ПКФ РИС РИС: К

1

ПТ;

БПТ

ФСС-3,4

К

К

ФСС-3,4

К

К

ДКС К ФСС-3,4 К
ИС ПКФ РИС РИС; К

2

 

БТП

ФСС-3,4

К

К

ФСС-3,4

К

К

ДКС К ФСС-3,4 К
ИС

ПКФ

ПКФ

К

РИС

РИС

РИС

Таблица№7:

Исходя из таблицы №7 для приёмника 2-го класса сложности я выбираю ПЧ на биполярном транзисторе, нагруженным либо на ФСС-3,4; либо на одиночный колебательный контур.

Схему ПЧ выбирают либо с совмещённым, либо с отдельным гетеродином, так как мой приёмник 2-го класса сложности то я выбираю схему

ПЧ с отдельным гетеродином нагрузкой которого является ФСИ, состоящий из LC контуров. Избирательность по соседнему каналу, которая обеспечивается входной цепью.

Se′=(N+1)*20lg 1+(2*∆f*Qэк./fc max)² дБ, где N- число каскадов УРЧ, ∆f- стандартная расстройка, равная 9кГц для километрового, гектометрового и декаметрового диапазонов; fc max- максимальная частота сигнала; Qэк.-ранее выбранная добротность контуров входной цепи и УРЧ.

Значение Seфси рассчитывают по формуле:

Seфси =Se-(Se′+Seупчобщ),дБ. Таблица№8

параметр ПФ1П-1 Пф1П-2 ПФ1П-001 ПФ1П-013
Средняя частота полосы пропускания, кГц 465±2,5 465±2,5 465±2,5 465±2,5
Ширина полосы пропускания на уровне, дб, кГц 6,5-10,0 8,5-12,5 7,0-10,5 9,5-13,5
Неравномерность затухания в полосе пропускания, дб, не более 3 3 1 1
Затухание в полосе пропускания, дб, не более 12 12 4,5 4,5
Избирательность по соседнему каналу (ослабление при расстройке ±9кГц), дб, не менее 41 38 12 9

Согласующие сопротивления, кОм со стороны:

Входа

Выхода

1,2

0,68

1,2

0,68

2

1

2

1

 

 

Для (ДВ):

Se′=(0+1)*20lg 1+(2*9*9.74/408 )² = 20*lg1,08=0,73дб

Seфси=30-(0,73+6)=23,27дб

Для (СВ):

Se′=(0+1)*20lg 1+(2*9*31.9/1605)² = 0.52дб

Seфси=30-(0,52+6)=23,48дб

Пфси =П./а, где, а=0,8÷0,9 – коэффициент расширения полосы. Выбираю, а=0,85

Пфси =7кГц/0,85=8,2кГц

Для определения количества звеньев рассчитывают необходимую эквивалентную добротность контуров ФСИ:

Qэк.фси= 2*1,41*fпр/Пфси=2*1,41*465/8,2=160

Максимальная конструктивная добротность контуров ФСИ Qконфси=200. Должно выполнятся условие:

Qэк.фси≤(0,6÷0,8)*Qконфси

160≤120÷160 – условие выполняется.

Относительная расстройка и обобщенное затухание:

αe=2*∆f/Пфси = 2*9/12,5=1,44

βe=2*fпр/Qэкфси *Пфси =2*465/160*12,5=0,465

подставляя эти значения в графики, получаем Se1=6дб

определяем необходимое число звеньев по формуле:

Для ДВ:

Nфси= Seфси/Se1=23,27/6=3,87≈4

Для СВ:

Nфси= Seфси/Se1=23,48/6=3,91≈4

Исходя из полученного коэффициента видно, что нагрузкой моего ПЧ будет являться 4-х звенный ФСИ состоящий из LC контуров.

1.2.10 Выбор транзисторов приёмника для тракта радио частоты и промежуточной частоты.

В целях унификации в тракте РЧ и ПЧ используются одни и теже транзисторы. Выбор транзисторов осуществляется исходя из следующих соображений:

1.   Fmax≤0.1fгр

2.   Uk≥Eи

Выбираю транзистор ГТ309Б

Fгр=80МГц и Eкmax=10В

Проверяю выполнение условий 1 и 2:

1.   Fmax≤0,1fгр≤0,1*80=8МГц

2.   Uk=10В≥Eи=6В

Условие выполняется, следовательно, транзистор выбран правильно, выписываю основные параметры в таблицу№9

Тип транзистора

Ik,

ma

Uk,

B

S,

ma/B

h21э

C12,

пФ

g11э,

сим

Rвх,

кОм

h22э,

мксим

h11э,

Ом

ГТ309Б 10 5 26 120 5 0,001 1,25 5 38
Тип транзистора

τк,

мксек

Ск,

пФ

rб, Ом

gi,

сим

g,

сим

ГТ309Б 0,0005 10 75 0,0000045 0,00021

Так как параметры транзистора рассчитаны определённой частоте, чаще всего 1000Гц, то необходимо пересчитать его параметры на f0=465кГц

Вычисление высоко частотных параметров транзистора:

1.   определяем параметры транзисторов при токе Ik2=1ma:

A=Ik2/Ik1=1/10=0.1; S0’=A*S0=0.1*26=26ma/B;

g’=A*g=0.1*0,00021=0,000021сим;

g’i=A*gi=0.1 * 0,0000045=0,00000045сим;

τ’=А*τ=0,1*0,5=0,05нсек=0,00005мксек;

2.   определяем вспомогательные коэффициенты:

Н=S0’*rб/1000=2.6*75/1000=0.195;

Ф=S0’*rб*Ck/τ’*1000000000=2.6*75*10/0.0005*1000000000=0,0039сим

Б=τ’/rб*(1-g’*rб)*1000000=(0,00005/75)*(1-0,000021*75)*1000000= =0,6656пФ

v=2*π*f0*τ’=2*3.14*0,465*0,00005≈0,00015

3.Определяем входное сопротивление транзистора:

gвх=g’+v²/rб=0,000021+0,00015²/75≈0,000021сим

Rвх=1/gвх=1/0,000021=47619Ом≈48кОм

4. Определяем выходное сопротивление транзистора:

gвых=gi’+v²*Ф=0,00000045+0,00015²*0,0039≈0,00000045сим

Rвых=1/gвых=1/0,00000045=2222222,22≈2,2Мом

5.Определяем входную ёмкость:

Свх=Б=0,6656пФ

6.Определяем выходную ёмкость:

Свых=Ск*(1+Н)=10*(1+0,195)=11,9 5пФ

7.крутизна характеристики:

S=S0’=26ma/B

Для удобства выписываю ВЧ параметры транзистора на рабочей частоте f≤465кГц в таблицу№10:

Тип

транзистора

Ik,

ma

τ,

мксек

Ск,

пФ

S,

ma/B

Rвх,

кОм

Rвых,

МОм

Свх,

пФ

Свых,

пФ

ГТ309Б 1 0,00005 10 26 48 2.2 0.6656 11.95

1.2.11. Определение требуемого усиления до детектора:

Определение требуемого усиления до детектора:

При приёме на магнитную антенну чувствительность задаётся напряжённостью электрического поля Е в точке приёма, обеспечивающей на выходе приёмника нормальную выходную мощность.

Амплитуда напряжения на выходе первого каскада приёмника.

Umвх=Е*hд*Qэ*m2,мВ, где

Е - заданная напряжённость поля в точке приёма, мВ/м

hд. – действующая высота магнитной антенны, м; на ДВ и СВ можно принять hд=0,02÷0.04м

Qэ – эквивалентная добротность контура входной цепи;

m2 – коэффициент включения входа электронного прибора в контур входной цепи.

m2= (dэп-dкон)*(Rвх/ρmax), где ρmax – характеристическое сопротивление контура;

ρmax=159/(fcmax[МГц]*(Скмин+Ссх) [пФ]),

 Rвх – сорпотивление первого каскада приёмника, т.к. УРЧ отсутствует, то

Rвх=1/(0,8*g11э)

dэп=1/Qэк

dкон=1/Qкон

Необходимый коэффициент усиления берут с запасом из – за разброса параметров, неточной настройки контуров и т.д.

Кн’=(1.4÷2)*Кн

Для ДВ:

dэп=1/Qэк=1/10,89=0,091

dкон=1/Qкон=1/90=0,011

Rвх=1/(0,8*g11э) = 1/(0,8*0,001)=1250Ом=1,25кОм

ρmax=159/(fcmax[МГц]*(Скмин+Ссх) [пФ])=159/0,408*(11,9+30)=2,3 кОм

m2= (dэп-dкон)*(Rвх/ρmax)= (0,091 -0,011)*(1,25/2,3)=0,043

Umвх=Е*hд*Qэ*m2=0,003*0,03*10,89*0,043=47,6мкВ

Кн=Uвхd/1.41*Uвх=0,6 /1,41*0,0000476=8939раз

Определяем коэффициент усиления с запасом на 40%:

Кн’=1,4*8939≈12520раз

Для СВ:

dэп=1/Qэк=1/31,9=0,031

dкон=1/Qкон=1/140=0,007

Rвх=1/(0,8*g11э) = 1/(0,8*0,001)=1250Ом=1,25кОм

ρmax=159/(fcmax[МГц]*(Скмин+Ссх) [пФ])=159/1,605 *(10+30)=2,47 кОм

m2= (dэп-dкон)*(Rвх/ρmax)= (0,031-0,007)*(1,25/2,47)=0,012

Umвх=Е*hд*Qэ*m2=0,003*0,04*31,9*0,012=45,93мкВ≈46мкВ

Кн=Uвхd/1.41*Uвх=0.6 /1.41*0,000045936=9263раз

Определяем коэффициент усиления с запасом на 40%:

Кн.’=1.4*9263≈13000раз

Определение числа и типов усилительных каскадов до детектра:

Так как УРЧ отсутствует, то рассчитываем коэффициент усиления Ку. Для начала выберем 2 каскада УПЧ, nпр=3;

для УПЧ:

Ку=6,3* S/f*Ck =6.3* 34/0.465*2,8=32,1

для ПЧ:

 Кпр=6,3* Sc/Fc*Ck=6.3* 26/1.605*2,8=15раз

Определяю общий коэффициент усиления Кобщ

Кобщ=Кпр*Купч^(nпр-1)=8*15,96^3-1=15*32,1²=15456

Так как Кобщ>Кн’ для ДВ и Для СВ то хватет 2 каскадов УПЧ

Первый каскад УПЧ будет апериодический, а второй широкополосный.

Выбор схемы АРУ и числа регулируемых каскадов:

Выбираю схему АРУ с задержкой, работающую на принципе изменения эмиттерного тока за счёт подачи регулирующего напряжения в цепь базы транзистора.

Рассчитываем необходимые пределы изменения коэффициента усиления регулируемых каскадов по формуле:

nн=Д-В, где:

Д-заданное изменение сигнала на входе приёмника, дб

В- заданное изменение сигнала на выходе приёмника, дб

nн=25-6=19дб

Считая что регулируемые каскады идентичны, определяют необходимое количество регулируемых каскадов по формуле:

NАРУ=nн/20*lgn, где n-изменение коэффициента усиления одного регулируемого каскада

Зададимся n=10, тогда:

NАРУ=19/20*lg10=0.95»1

В соответствии с рекомендациями по выбору схемы АРУ в качестве регулируемого каскада используем первый каскад УПЧ по апериодической схеме.

1.2.12.Эскизный расчёт тракта низкой частоты:

Выбор типа электродинамического громкоговорителя:

Исходными данными, необходимыми для выбора динамического громкоговорителя, являются:

1.   номинальная выходная мощность: Рвых=0,15Вт

2.   полоса воспроизводимых частот: Fн=300Гц÷Fв=3500Гц

3.   неравномерность частотной характеристики:

4.   среднее звуковое давление при заданной номинальной мощности:

Применяемые в транзисторных переносных приёмниках электродинамические громкоговорители должны иметь маленькие размеры. Исходя, из этих соображений я выбираю громкоговоритель типа: 0,2ГД-1, с параметрами:

Таблица№11:

тип

Pном,

Вт

Диап. F(Гц)

Среднее

Звуковое

Давление

Полное

Сопротивление

Звуковой катушки, Ом

Габариты

мм

Вес,

гр

н/м² бар
0,2ГД-1 0,200 300 10000 0,18 1,8 6±0,6 60*25 50

Выбор типа схемы и транзисторов для выходного каскада:

В качестве оконечных каскадов усилителей низкой частоты можно использовать как однотактные, так и двухтактные схемы. Схема выходного каскада определяется назначением усилителя и требованиями, предъявляемыми, к нему. Так как у моего усилителя Рвых=0,150Вт, то я выбираю двухтактный каскад в режиме класса АВ на маломощных транзисторах.

Выбор транзисторов производится, исходя из следующих соображений:

1.   предельно допустимая мощность рассеяния на один транзистор Ркмакс должна превышать рассеиваемую на коллекторе мощность Рк, которую можно вычислить по формуле:

Рк=0,4*Рн’/ ηунч *ξ², где

Рн’=Рн/2-номинальная мощность, заданная по условию, приходящаяся на один транзистор.

Рк-мощность рассеиваемая на коллекторе транзистора.

ηунч-КПД выходного каскада =1

ξ-коэффициент использования коллекторного напряжения=0,8÷0,95; выбираю 0,9

Рн’=0,150/2=0,075Вт=75мВт

Рк=0,4*0,075/1*0,9²=0,037Вт≈37мВт

Выбираю транзистор: КТ315А, у которого Ркмакс=150мВт; Екмакс=25В

2.   Проверяю выполнение условия:

Ек≤(0,3÷0,4)Екмакс

6В≤(0,3÷0,4)*25=7,5÷10

Условие выполняется, следовательно, транзистор выбран правильно.

Выбор транзисторов для каскадов УННЧ:

В большинстве случаев каскады УННЧ могут быть выполнены на маломощных транзисторах. При этом, если усиливаемые частоты не превышают единиц килогерц, выбор транзисторов производится по низкочастотным параметрам из следующих соображений:


Информация о работе «Расчёт супергетеродинного приёмника ДВ, СВ волн»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 42706
Количество таблиц: 18
Количество изображений: 0

Похожие работы

Скачать
42274
2
9

... регулировки усиления АРУ, а также специальные типы усилителей. Усилители имеющие логарифмическую зависимость выходного напряжения от входного называются логарифмическими. В настоящее время в приёмниках радиолокационных станций, предназначенных для обнаружения объектов применяются именно логарифмические усилители. Приёмники радиолокационных станций сопровождения объектов имеют АРУ. Частота ...

Скачать
32507
4
30

... W=Iном*tр (2,57) W=0,0405*3=0,12 Ач 2.15.5 Тип источника питания Выбран 5ЦНК-0,2. Емкость 0,2 Ач. Ток 65 мА. Напряжением Е=5-7 В 4 Электрический расчёт каскадов приёмника 4.1   Расчёт входной цепиИсходные данные: рабочий диапазон частот – = 145,04 – 290,7 КГц; пределы изменения ёмкости - С min - С max = 25 - 750 пФ средние значения ...

Скачать
21700
2
10

ующие ПРМ можно поделить на: детекторные ПРМ без УЗЧ и с УЗЧ, приёмники прямого усиления, регенеративные и сверхрегенеративные ПРМ, синхронные, ПРМ с прямым преобразованием частоты и супергетеродинные ПРМ с одним и более преобразованиями частоты. приемник радиовещательный переносной усиление Современные ПРМ в большинстве случаев строят по супергетеродинной схеме, т.к. данная схема обладает ...

Скачать
39286
6
0

... устройств», под. ред. Сиверса А.П., Сов.Радио 1976г. Дата выдачи «____» ___________________ 20 ___ г. Введение.   Немного о радиовещательном диапазоне. Средние волны.   Имеют достаточную дифракцию, чтобы обеспечивать уверенный (бестеневой) прием в среднепересеченной местности, и в условиях железобетонной многоэтажной городской ...

0 комментариев


Наверх