1.1 Понятие о p-n переходе.

Основным элементом большой группы полупроводниковых приборов является электронно-дырочный переход. Такой переход представляет собой область между двумя полупроводниками разного типа проводимости, объединенную основными носителями заряда. В зависимости от характера распределения концентрации примеси в объединенном p-n слое переходы бывают ступенчатыми (резкими) и плавными.

В плавных p-n-переходах изменение концентрации донорных (Nd), и акцепторных (Na) примесных атомов происходит на расстоянии, сравнимом с шириной обеднённого слоя или превышающем её. В резких p-n-переходах изменение концентрации примесных атомов от Nd до Na происходит на расстоянии, меньшем ширины обеднённого слоя [8]. Резкость границы играет существенную роль, т.к. в плавном p-n-переходе трудно получить те вентильные свойства, которые необходимы для работы диодов и транзисторов [4].

На рис. 1.1 представлено распределение зарядов в полупроводниках при плавном и резком изменении типа проводимости.

При плавном изменении типа проводимости (рис. 1.1.а) градиент концентрации[2] результирующей примеси  мал, соответственно малы и диффузионные токи[3] электронов и дырок.

Эти токи компенсируются дрейфовыми токами[4], которые вызваны электрическим полем связанным с нарушением условия электрической нейтральности:

n + Na = p + Nd, (1.1.1)

где n и p – концентрация электронов и дырок в полупроводнике:

Na, Nd – концентрация ионов акцепторной и донорной примесей.

Рисунок 1.1 Распределение примеси и носителей заряда в полупроводнике при изменении типа проводимости: (а) плавное изменение типа проводимости; (б) резкое изменение типа проводимости.

Для компенсации диффузионных токов достаточно незначительного нарушения нейтральности, и условие (1.1.1) можно считать приближенно выполненным.

Условие электронейтральности свидетельствует о том, что в однородном полупроводнике независимо от характера и скорости образования носителей заряда в условиях как равновесной, так и не равновесной концентрации не могут иметь место существенные объемные заряды в течении времени, большего (3-5)τε ε≈10-12 с), за исключением участков малой протяжённости:

где τε – время диэлектрической релаксации; ε0 – диэлектрическая постоянная воздуха; ε – относительная диэлектрическая проницаемость полупроводника; q – заряд носителя заряда (электрона); n0, p0 – равновесные концентрации электронов и дырок в полупроводнике; μn, μp – подвижность электронов и дырок в полупроводнике.

При резком изменении типа проводимости (рис. 1.1.б) диффузионные токи велики, и для их компенсации необходимо существенное нарушение электронейтральности (1.1.1).

Изменение потенциала по глубине x полупроводника происходит по экспоненциальному закону: . Глубина проникновения электрического поля в полупроводник, Ld, называется дебаевской длиной и определяется из уравнения:

,

где  - температурный потенциал.

При этом электрическая нейтральность существенно нарушается, если на дебаевской длине изменение результирующей концентрации примеси велико.

Таким образом нейтральность нарушается при условии:

(1.1.2)

В состоянии термодинамического равновесия при отсутствии вырождения[5] справедлив закон действующих масс:

(1.1.3)

При условии (1.1.3) правая часть (1.1.2) достигает минимума при  поэтому условие существования перехода (условие существенного нарушения нейтральности) имеет вид:

, (1.1.4)

где –дебаевская длина в собственном полупроводнике.

Переходы, в которых изменение концентрации примеси на границе слоев p- и n-типа могут считаться скачкообразными  называются ступенчатыми.

В плавных переходах градиент концентрации примеси конечен, но удовлетворяет неравенству(1.1.4).

Практически ступенчатыми могут считаться p-n-переходы, в которых изменение концентрации примеси существенно меняется на отрезке меньшем Ld.

Такие переходы могут быть полученными путем сплавления, эпитаксии.

По отношению к концентрации основных носителей в слоях p- и n-типа переходы делятся на симметричные и несимметричные.

Симметричные переходы имеют одинаковую концентрацию основных носителей в слоях (pp ≈ nn). В несимметричных p-n-переходах имеет место различная концентрация основных носителей в слоях (pp >> nn или nn >> pp), различающаяся в 100–1000 раз [3].

1.2 Структура p-n-перехода.

Наиболее просто поддаются анализу ступенчатые переходы. Структура ступенчатого перехода представлена на рис. 1.2. Практически все концентрации примесей в p- и n-областях превышают собственную концентрацию носителей заряда ni. Для определения будем полагать, что эмиттером является p–область, а базой n–область. В большинстве практических случаев выполняется неравенство

где  и -результирующие концентрации примеси в эмиттере и базе.


Рисунок 1.2 соответствует кремниевому переходу (ni ≈ 1010 см-3 ) при комнатной температуре (Т=290К) с концентрацией примеси ,.

Рисунок 1.2 Распределение примеси и носителей заряда в ступенчатом P-N переходе: (а)- полулогарифмический масштаб; (б)- линейный масштаб.

В глубине эмиттера и базы концентрация основных носителей заряда практически совпадает с результирующей концентрацией примеси:

pро =Nэ, n=NБ, (1.2.1)

а концентрация не основных носителей определяется законом действующих масс:

nр0=ni/pр0=ni/Nэ (1.2.2.а)

pn0=ni/nn0=ni/NБ (1.2.2.б)

Индексы «p» и «n» соответствуют p- и n-областям, а индекс «0» соответствует состоянию термодинамического равновесия. Следует отметить, что концентрация не основных носителей в базе больше чем в эмиттере (а при Nэ>>NБ много больше). На рис. 1.2.а распределение примесей и носителей заряда представлено в полулогарифмическом масштабе.

Переход занимает область –lр0 < x < ln0. Конечно границы перехода x=-lp0 и x=ln0 определены в некоторой степени условно, так как концентрация основных носителей изменяется плавно. Тем не менее, из рисунка видно, что уже на небольшом расстоянии от границ внутри перехода выполняется равенство:

P<<Nэ, (1.2.3)

n<<NБ.

Неравенства (1.2.3) выполняется во всем p-n-переходе.

На рис. 1.2.б распределение концентрации носителей и примесей заряда изображены в линейном масштабе. Из рисунка видно, что в эмиттерной области перехода (-lp0<x<0) концентрация подвижных носителей очень мала по сравнению с концентрацией примеси. Эта область имеет отрицательный объемный заряд, плотность которого не зависит от координаты:

рэ = -lNэ.

В базовой области перехода (0<x<lno) плотность объемного заряда положительна:

pБ=lNб.

Для n-области основными носителями являются электроны, для p-области дырки. Основные носители возникают почти целиком вследствие ионизации донорных и акцепторных примесей.

Помимо основных носителей эти области содержат неосновные носители: n-область - дырки (pno), p-область –электроны (nро). Их концентрацию можно определить, пользуясь законом действующих масс:

nno∙Pno=pno∙nno=ni2. При nno=ppo=1022 м-3 и ni=1019 м-3 (для Ge)

получаем pno=nро=1016 м.

Таким образом, концентрация дырок в p-области на шесть порядков выше концентрации их в n-области, точно также концентрация электронов в n-области на шесть порядков выше их концентрации в p-области. Т.к. концентрация дырок в области p выше, чем в области n, то часть дырок в результате диффузии перейдет в n- область, где в близи границы окажутся избыточные дырки, которые будут рекомбинировать с электронами. Соответственно в этой зоне уменьшается концентрация свободных электронов, и образуются области нескомпенсированных положительных ионов донорных примесей. В p-области уход дырок из граничного слоя способствует образованию областей с нескомпенсированными отрицательными зарядами акцепторных примесей, созданными ионами.

Подобным же образом происходит диффузионное перемещение электронов из n-слоя в p-слой. Однако в связи с малой концентрацией электронов по сравнению с концентрацией дырок перемещением основных носителей заряда высокоомной области в первом приближении пренебрегают. Перемещение происходит до тех пор, пока уровни Ферми обоих слоев не уравняются [4].

а)

б)

в)

Рисунок 1.3 Физические процессы в полупроводнике: (а) – плоскость физического перехода; (б) – распределение концентрации акцепторной и донорной примеси в полупроводнике; (в) – объёмный заряд.

На рис. 1.3.б, показано изменение концентрации акцепторных и донорных атомов при перемещении вдоль оси Х перпендикулярной плоскости. Неподвижные объемные заряды создают в p-n-переходе контактное электрическое поле с разностью потенциалов, локализованное в области перехода и практически не выходящее за его пределы.

Поэтому вне этого слоя, где поля нет, свободные носители заряда перемещаются хаотично и число носителей, ежесекундно наталкивающихся на слой объемного заряда, зависит только от их концентрации и скорости их теплового движения, которое подчиняется классической статистики Максвелла-Больцмана.

На рис. 1.3.в показаны неподвижные объемные заряды, образовавшиеся в p-n-переходе.

Неосновные носители - электроны из p-области и дырки из n-области, попадая в слой объемного заряда подхватываются контактными полем Vк и переносятся через p-n переход.

Другие условия складываются для основных носителей. При переходе из одной области полупроводника в другую они должны преодолевать потенциальный барьер qVк, сформировавшийся в p-n-переходе. Для этого они должны обладать кинетической энергией движения вдоль оси Х, не меньшей qVк.

На первых порах, после мысленного приведения p- и n-областей в контакт, потоки основных носителей значительно превосходят потоки неосновных носителей. Но по мере роста объемного заряда увеличивается потенциальный барьер p-n-перехода, и потоки основных носителей резко уменьшаются. В тоже время потоки неосновных носителей не зависят от qVk и остаются неизменными. Поэтому относительно скоро потенциальный барьер достигает такой высоты, при котором потоки основных носителей сравниваются с потоками неосновных носителей.

Это соответствует установлению в p-n-переходе состояния динамического равновесия.

Из рис. 1.3.а видно, что в некоторой области Х=Хф концентрация электронов и дырок одинакова:

n0ф) = p0ф) = n

Эта плоскость называется плоскостью физического перехода в отличие от плоскости металлургического (или технологического) перехода Х=0, где результирующая концентрация примеси равна нулю. В симметричных переходах плоскости физического и металлургического переходов совпадают.

  1.3 Методы создания p-n-переходов.

Электронно-дырочные переходы в зависимости от технологии изготовления разделяются на точечные, сплавные, диффузионные, эпитаксиальные, планарные и другие.

1.3.1 Точечные переходы.

Образуются точечно-контактным способом (рис. 1.4.). К полированной и протравленной пластине монокристаллического полупроводника n-типа подводят иглу, например из бериллиевой бронзы с острием 20-30 мкм. Затем через контакт пропускают мощные кратковременные импульсы тока. Место контакта разогревается до температуры плавления материала зонда, и медь легко диффундирует внутрь полупроводника образуя под зондом небольшую по объему область p-типа. Иногда перед электрической формовкой на конец иглы наносят акцепторную примесь (In или Аl), при этом прямая проводимость контакта доходит, до 0,1 см. Таким образом, электронно-дырочный переход образуется в результате диффузии акцепторной примеси из расплава зонда и возникновения под ним области p-типа в кристаллической решетке полупроводника n-типа. Точечные переходы применяют при изготовлении высококачественных диодов для радиотехнического оборудования.

 


Информация о работе «Расчет параметров ступенчатого p-n перехода (zip 860 kb)»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 33382
Количество таблиц: 1
Количество изображений: 9

0 комментариев


Наверх