2. Выбор и обоснование структурной схемы ФПУ.

ФПУ является составной частью линейного тракта и служит связующим звеном между ВОК и приемником.

Фотодиоды изготавливаются из разных материалов. Рабочие диапазоны длин волн , в которых достигается максимальная эффективность фотодиодов для разных полупроводниковых материалов , приведены в таблице 2.1.

Таблица 2.1.

Материал

Диапазон принимаемых длин волн λ,нм

Кремний 400-1000
Германий 600-1600
GaAs 800-1000
InGaAs 1000-1700
InCaAsP 1100-1600

Рассмотрим более подробно этот важный узел ВОСПИ.

Фотоприемник служит для приема (детектирования) и преобразования оптических сигналов в электрические.

Фотоприемник имеет оптический вход (управляющая цепь) и электрический выход (сигнальная цепь). Параметры ФПУ должны быть согласованы с источником излучения и оптической линией связи , с одной стороны, и с электрической нагрузкой, включающей в себя любой требуемый преобразователь электрических сигналов :усилитель, модулятор, декодер, с другой стороны. Как элемент оптической цепи фотоприемник может работать как в аналоговом, так и в цифровом режимах, что определяется формой оптического сигнала, поступающего на его вход.

Фотоэлектрическое преобразование позволяет получить параметры сигнала, при которых аппаратура, подключенная к выходу ФПУ, может нормально функционировать.

Особенности ВОСПИ определяют выбор принципа оптического детектирования, его приборную и аппаратурную реализацию.

Преимущественно распространен принцип прямого детектирования, основу которого составляют

полупроводниковые фотоприемники. Ему присущи простота реализации, схемная минимизация, возможность микроминиатюризации и интеграции на уровне фотопреобразований, высокое быстродействие.

Конструктивно ФПУ состоит из фотодиода и широкополосного высокочувствительного усилителя.

Усилители ФПУ традиционно делятся на предварительный и оконечный усилитель. На рисунке 2.1 приведена схема ФПУ с прямым детектированием.

 

Рис. 2.1 Структурная схема ФПУ.

ФЭППИ - фотоэлектрический полупроводниковый приемник излучения.

ПУ - предварительный усилитель.

ОУ - оконечный усилитель.

ОС - цепь отрицательной обратной связи.

Фотоэлектрический полупроводниковый приемник излучения преобразует оптический сигнал в электрический. В качестве приемника излучения чаще всего используют фотодиод или лавинный фотодиод.

Предварительный усилитель(ПУ) – усиливает сигнал, обеспечивая наибольшее отношение сигнал/шум. Главной задачей проектирования ФПУ является достижение минимального порога чувствительности. Чем меньше этот порог , тем больше длина регенерационного или усилительного участка. Поэтому ПУ должен быть хорошо согласован с ФЭПИ, обеспечивая эффективную передачу энергии сигнала и малый уровень шума. Входной каскад ПУ выполняется на биполярном транзисторе и имеет входное сопротивление, равное внутреннему сопротивлению ФЭППИ.

Оконечный усилитель (ОУ) – осуществляет усиление, понижающее выходное сопротивление ФПУ, необходимое для работы устройства обработки сигнала.

ФПУ, как правило , работает при уровнях входной мощности , превышающих порог чувствительности. Запас входной мощности необходим для обеспечения надежности связи, так как с течением времени, вследствие старения лазера, мощность передатчика уменьшается.

Приемник излучения и его рабочий режим выбирается исходя из заданных спектрального диапазона порога чувствительности, быстродействия и требуемого динамического диапазона.

В большинстве случаев приходится делать выбор между p-i-n – фотодиодом и лавинным фотодиодом. Последний, хотя и позволяет выиграть в пороге чувствительности, работает в меньшем диапазоне температур, часто требует повышенного напряжения питания, стабилизации режима. Надежность ЛФД, включенного в конкретную схему, может оказаться меньше надежности p-i-n – фотодиода. Уступает ЛФД, p-i-n – диоду и в пределах линейности характеристики детектирования. В качестве фотодиода в аналоговых ВОСПИ с большим динамическим диапазоном используется p-i-n – диод. ЛФД не используется, так как имеет малый динамический диапазон из-за сильной зависимости коэффициента умножения от сигнала.

Следующим узлом ФПУ является предварительный усилитель (ПУ). Шумовые свойства предусилителя, зависят от многих факторов: схемы реализации, типа фотодетектора, рабочей полосы частот, типа используемых транзисторов, коэффициента шума транзистора, выбора его рабочей точки, технологии изготовления, наличия и вида корректируемого фильтра. Для требуемого частотного диапазона шумовые параметры биполярного и полевого транзистора соизмеримы.

После выбора приемника излучения и типа транзистора входного каскада необходимо проектирование схемы предварительного усилителя. Предварительный усилитель (ПУ) усиливает электрический сигнал , обеспечивая наибольшее отношение сигнала к шуму. ПУ должен быть хорошо согласован с приемником излучения, обеспечивая одновременно эффективную передачу энергии сигнала и малый уровень шума. Для получения малошумящего усиления применяются схемы самой различной структуры: усилители могут быть дифференциальными и недифференциальными, содержать или не содержать цепи обратной связи и согласующие цепи.

Классификация схем осуществляется по нескольким направлениям. По способу преобразования сигнала во входной цепи различают усилители фотонапряжения, фототока , преобразователи токонапряжения и другие. По величине входного сопротивления усилители подразделяются на высокоимпендансные и низкоимпендансные. Усилители с глубокой обратной связью по напряжению называют трансимпендансными.

Рассмотрим подробнее свойства каждой схемы. Основные преимущества дифференциальных усилителей – это низкие требования к абсолютной величине номиналов элементов и высокая помехозащищенность. Вместе с тем , дифференциальные усилители уступают обычным по шумовым характеристикам : уровень шума в них на 3-5дБ выше. Дифференциальные усилители применяются в монолитных интегральных схемах и в тех случаях , когда весьма важным требованием может оказаться помехозащищенность, например в вычислительных (схемах) сетях.

Среди схем без обратной связи наибольшее распространение получили высокоимпендансные усилители на полевых транзисторах. Низкоимпендансные усилители применяются главным образом на СВЧ.

Низкоимпендансным усилителем принято называть усилитель с входным сопротивлением 50 Ом. Достоинством усилителя первого типа является возможность достижения минимального порога чувствительности , а недостатками : сравнительно низкий динамический диапазон , высокая чувствительность к действию электромагнитных помех, необходимость индивидуальной настройки. использование высокого входного сопротивления (единицы, десятки МОм) приводят к интегрированию сигнала во входной цепи, вызывает частотные искажения. При этом возрастает отношение сигнала к шуму первого каскада усилителя.

Хотя использование большого входного сопротивления помогает максимизировать отношение сигнал/шум в приемнике оптических сигналов, однако оно одновременно порождает неудобства, вызванные необходимостью осуществлять значительную по величине коррекцию.

Первое неудобство состоит в том, что коррекция должна быть индивидуально приспособлена для каждой схемы. Она не

может быть установлена заранее. Причина в том, что коэффициент усиления должен изменяться по закону: G(f) = G0· (1+j·2p·f·С·R), а значения Свх и Rвх изменяются от прибора к прибору от схемы к схеме и часто зависят от температуры.

В результате каждая схема должна настраиваться индивидуально.

Вторая проблема в том, что значительное изменение коэффициента усиления с частотой означает уменьшение динамического диапазона усилителя. Структурная схема этого типа предусилителя показана на рис. 2.2.

Рис. 2.2 Структурная схема высокоимпедансного усилителя.

 

Положительная обратная связь вводится для компенсации входной емкости. Величина сопротивления нагрузки рассчитывается по формуле:

Только входная емкость (Свх) берется компенсированной. Активный, как правило, фильтр K(jw), формирует требуемую частотную характеристику.

Схема с низким входным сопротивлением не нуждается в коррекции АЧХ.

Использование хорошего лавинного фотодиода с коэффициентом усиления М=20, и более гарантирует обеспечение режима детектирования, ограниченного дробным шумом.

Однако, это справедливо для фотодетектора на p-i-n - фотодиоде и увеличение шума в этом случае может быть значительным.

Структурная схема низкоимпедансного усилителя приведена на рис. 2.3

Рис. 2.3 Структурная схема низкоимпедансного усилителя

Такой усилитель требует только расчета сопротивления нагрузки Rн по известной, в общем случае, входной емкости и требуемой полосе частот:

Хотя входной импульс малой величины и обеспечивает большой динамический диапазон, тепловые шумы ограничивают возможности применения в системах связи.

Обычно предпочитают использовать усилитель с обратной связью. Его основное преимущество – отсутствие необходимости осуществлять какую – либо коррекцию. Шумы такого усилителя могут быть много меньше, чем у обычного усилителя напряжения без коррекции.

Трансимпедансный усилитель содержит цепь параллельной обратной связи (рис. 2.4)

Рис. 2.4 Структурная схема трансимпедансного усилителя.

Такой усилитель рассматривать как преобразователь фототокнапряжение. Его коэффициент преобразования, равный отношению:  , имеет размерность сопротивления. С сопротивлением передачи “трансимпедансом “ и связано название схемы 2.4. При достаточно большом (бесконечном) усилении в отсутствии обратной связи сопротивление передачи равно Rос. В отличии от схемы без обратной схемы, где резистор нагрузки имеет то же сопротивление передачи (Rн=Rос), нагрузка в виде трансимпедансного усилителя усиливает мощность. Благодаря действию обратной связи происходит снижение входного сопротивления и может исчезнуть необходимость высокочастотной коррекции, увеличивается динамический диапазон. Выигрыш в динамическом диапазоне примерно равен соотношению коэффициентов усиления при разомкнутой и замкнутой цепи обратной связи.

Использование общей параллельной отрицательной обратной связи позволяет получить очень хорошую стабильность режимов работы по постоянному току всех транзисторов, а также одновременно осуществить коррекцию частотной характеристики ФПУ, выполненное применением данной структуры обеспечивает динамический диапазон на 10 дБ. больше, чем усилитель высокоимпедансный, при увеличении шумов примерно на 1дБ.

Основная проблема усилителей данного типа – обеспечение их устойчивости. Использование протяженной цепи обратной

связи, охватывающей усилитель с большим коэффициентом усиления и высоким входным импедансом, делает схему усилителя склонной к самовозбуждению на высоких частотах, вследствие возникновения положительной обратной связи через транзисторную емкость.

Чтобы избежать самовозбуждения, требуется тщательное, продуманное компоновка и эффективная экранировка элементов схемы. И так наименьшими шумами обладают высокоимпедансные усилители с интегрированием во входной цепи. По динамическому диапазону на первом месте оказывается трансимпедансный усилитель, за ним следует низкоимпедансный и высокоимпедансный. По рабочему диапазону частот первенство принадлежит низкоимпедансному усилителю. В меньшем диапазоне частот возможно применение высокоимпедансного и особенно трансимпедансного усилителей.

Учитывая все достоинства и недостатки схем усилителей, выбираем схему трансимпедансного усилителя.

В данном дипломном проекте разрабатывается Фотоприемное устройство для короткой линии связи (1км.).

Предполагаем, что на выходе ФПУ находится профессиональный радиоприемник. ФПУ в нашем случае без системы автоматической регулировки усиления (АРУ), так как есть вероятность, что устройство АРУ будет откликаться на помеху. В результате приведенного анализа структурная схема ФПУ примет вид:

 

Рис. 2.5 Структурная схема фотоприемного устройства.

1.    – предварительный усилитель

2.    – оконечный усилитель

РПрУ – радиоприемное устройство


3. Выбор и обоснование принципиальной схемы предварительного усилителя ФПУ.

 

3.1 Выбор и обоснование принципиальной схемы предварительного усилителя ФПУ.

 

В соответствии со структурной схемой приведенной ранее, ФПУ конструктивно делится на два функционально независимых усилителя : предварительный и оконечный.

Рассмотрим предварительный усилитель. Основным требованием , при соблюдении прочих условий (заданной полосы пропускания) предъявляемых к предварительному усилителю является обеспечение заданного отношения сигнал/шум.

Динамический диапазон фотоприемного устройства по минимальному сигналу определяется собственными шумами ФПУ, которые состоят из шумов фотодиода и шумов усилителя.

От выбора типа транзистора , используемого во входном каскаде, зависит шум усилительной схемы.

Для требуемого частотного диапазона шумовые параметры биполярного транзистора (БП) и полевого транзистора (ПТ) соизмеримы, поэтому выбираем биполярный транзистор при использовании которого проще осуществить заданный частотный диапазон.

Шумовая эквивалентная схема входного каскада ФПУ представлена на рис.3.1.

iф~ - генератор фототока сигнала

iф,ш -генератор шумового фототока , создаваемого шумовой оптической мощностью.

iш,ф0- генератор шумового тока , создаваемого постоянной оптической мощностью.

iш,Rн – генератор шумового тока ,создаваемого эквивалентным сопротивлением нагрузки фотодиода по переменному току.

iш,БТ – генератор шумового тока ,создаваемого шумами БТ входного каскада.

Эти токи определяются из следующих выражений :

; (1)

; (2)

; (3)

; (4)

где:  Iф0-постоянный ток засветки

RIN=-155дБ/Гц – относительная интенсивность шума

– диапазон принимаемых частот

К – постоянная Больцмана

Т – температура (в Кельвинах)

Постоянная оптическая мощность ,величина которая определяется исходной рабочей точкой на вольт-амперной характеристике лазера для получения минимальных нелинейных искажений (комбинационные искажения) и потерями в ВОК, падающая на фотодиод , создает фототок сигнала и фототок фоновой засветки , определяемыми постоянной оптической мощностью, определяется соотношением:

iф= l·Pсв/η·h·ν или  iф=А·Рсв , А=l/η·h·ν ,

где Рсв – падающая на ФД оптическая мощность.

η – квантовый выход.

h – 6,63·10-34 – постоянная Планка

ν – частота света.

При Рсв на выходе НЛПН равном 0,5мВт на ФПУ будем иметь :

Iф0=А·Рсв/D ; где : D – потери в линии.

С учетом потерь на двух оптических разъемах(α=1дБ/км) и затуханием ОК(α=1дБ/км) суммарные потери D=3дБ/км, что составляет 10lgD=10lg3=0,5 раз.

А = 0,7 Вт/А

Подставляя фототок Iф0 в выражение(1) и (2) получим следующие соотношения

i2ш,ф0 = 2Iф0Δf = 32·10-19·1,75·10-4 = 5,6·10-15А2

i2ф,ш = I2ф0·10RIN/10·Δf = (0,175·10-3)2·10-15·106 = 3,06-1·10-17A2

т.е. мы получили ,что шумовой ток ,создаваемый постоянной оптической мощностью за счет RIN на два порядка меньше шумового тока , создаваемого постоянной фоновой засветкой и, соответственно, его влиянием в нашем случае можно пренебречь.

Таким образом , чем меньше ток базы . тем меньше шумы транзистора, но при малых токах ухудшается h21 ,а также ухудшаются частотные свойства , ухудшается fт, поэтому для вышесказанного частотного диапазона компромиссным решением будет использование СВЧ транзистора при токах покоя .

Iк ≈ 1÷2 мА

Формула коэффициента шума показывает справедливость этих допущений.

Например, при Rг = 1 кОм (эквивалентное сопротивление нагрузки ФД по переменному току ) , более нежелательно из-за больших частотных искажений.

При fв ≥ 400МГц необходимо использовать СВЧ транзистор 2Т3114В-6 , у которого fгр ≈ 4,7ГГц при Iк = 2мА

где: r’б - сопротивление тела базы

r б’э – сопротивление базы-эмиттер

h21э – 100

r’б – 5 Ом (для транзистора 2Т382А)

Rг=R1‌‌‌‌‌||R2||R4≈1кОм

rб’э=26/Iк·h21

При токе Iк=2мА, h21э=100, r’б=10 Ом.

При этих данных rб’э=1,3кОм; F=1,45 эквивалентный шумовой ток, учитывающий R транзистора , равен

 для f=1МГц

При минимизации собственных шумов ФПУ и максимизации динамического диапазона к построению электрической принципиальной схемы ФПУ и выбору режимов транзисторов его каскадов , особенно выходных , предъявляются противоречивые требования.

Во-первых, транзисторы выбираются СВЧ диапазона , например 2Т3114В-6 маломощные, с fгр≥4 ГГц.

Ток покоя входного каскада нами уже выбран из условия минимизации шумов.

Транзистор 2Т3114В-6 имеет следующие параметры:

Pк доп = 25 мВт; fг= 4,7 ГГц;

Iк доп = 15 мА; h21= 100 ;

Uк доп = 5 В; Cк = 0,4 пФ; rрасч = 6 нс

Чтобы совместить эти противоречивые требования (минимальные шумы , максимальный частотный и динамический диапазон), входной каскад выполняется по схеме эмиттерного повторителя, который обладает этими свойствами .

Второй каскад для обеспечения заданного частотного и динамического диапазонов выполняется по каскодной схеме с местной обратной связью(ОС). В качестве 2-го и 3-го каскадов используется СВЧ микросхема типа М 45121-2.

Наличие во втором каскаде ФПУ обратной связи увеличивает особенно динамический диапазон, а также и частотный, при этом не ухудшаются шумовые свойства ФПУ, так как первый каскад создает требуемое усиление по мощности.

Это же позволяет ток покоя каскадной схемы выбрать достаточно большим, что в свою очередь увеличивает глубину обратной связи и тем самым уменьшает нелинейные и частотные искажения.

Электрические параметры микросхемы приведены в таблице 3.1 в конце главы.



Информация о работе «Разработка фотоприемного устройства волоконно-оптической системы передачи информации (ВОСПИ)»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 88514
Количество таблиц: 12
Количество изображений: 15

Похожие работы

Скачать
89392
13
6

... АРУ и дифференциальным выходом. Модель PROM-155 дополнительно имеет встроенный усилитель-ограничитель и PECL – выход отсутствия сигнала в линии. Модули предназначены для работы в цифровых волоконно-оптических линиях связи со скоростью передачи информации 2..155 Мбит/c. Технические характеристики оптических модулей приведены в табл. 1.3. Таблица 1.3 – Технические характеристики оптических ...

Скачать
183923
13
0

... зондирования, коловорот и др.) КТП-2Г КТП-2БП 1 1 КТП-2П 1 УПТ 1 УПИ 1 1 Комплект устройства для фиксации местоположения соединительных муфт кабельной линии связи УФСМ По согласованию с заказчиком   Примечание. Средства измерения 1-5, 10-12, 14-17, 19 и 20 необходимы только в случае исп-я ОК с металл. элементами. 9.1.    Электрические проверки основных ...

0 комментариев


Наверх