О.В. Червяков, Омский государственный университет, кафедра математического моделирования 1. Введение

Пусть E = { e1,e2,,en} - некоторое множество мощности n. Системой независимости на множестве E называется непустое семейство J его подмножеств, удовлетворяющее условию: если JСимметрии многогранника системы независимостиСимметрии многогранника системы независимостии IСимметрии многогранника системы независимости, то IСимметрии многогранника системы независимости.

Множества семейства Симметрии многогранника системы независимостиназывается независимыми множествами. Максимальные по включению множества из Симметрии многогранника системы независимостиназываются базисами.

Автоморфизмом системы независимости Симметрии многогранника системы независимостиназывается такое взаимооднозначное отображение  множества E на себя, что (I){(e) | eI}Симметрии многогранника системы независимостидля любого независимого множества I. Группу автоморфизмов системы независимости Симметрии многогранника системы независимостибудем обозначать через Aut(Симметрии многогранника системы независимости).

Пусть RE - евклидово пространство, ассоциированное с E посредством взаимоодназначного соответствия между множеством координатных осей пространства RE и множеством E. Иными словами, RE можно понимать как совокупность вектор-столбцов размерности n с вещественными компонентами, индексированными элементами множества E. Всякому S E сопоставим его вектор инциденций по правилу: xSe= 1 при eS , xSe= 0 при eS. Очевидно, что это правило задает взаимооднозначное соответствие между 2E и вершинами единичного куба в RE. Многогранник системы независимости Симметрии многогранника системы независимостиопределим как P(Симметрии многогранника системы независимости) = Conv(xI | IСимметрии многогранника системы независимости). Ясно, что векторы инциденций независимых множеств системы независимости Симметрии многогранника системы независимости, и только они, являются вершинами многогранника P(Симметрии многогранника системы независимости) [4].

Пусть PRE - произвольный многогранник. Симметрией многогранника P назовем такое невырожденное аффинное преобразование  пространства RE, что (P){(x) | xP}=P. Как известно, всякое невырожденное аффинное преобразование  определяется невырожденной (nn)-матрицей A и сдвигом hRE, то есть (x)=Ax+h при xRE [1]. Очевидно, что невырожденное аффинное преобразование  пространства RE является симметрией многогранника P(Симметрии многогранника системы независимости) тогда и только тогда, когда для любого IСимметрии многогранника системы независимости существует такое JСимметрии многогранника системы независимости, что (xI) = xJ.

Симметрию с нулевым сдвигом будем называть линейной симметрией. Очевидно, что множество всех симметрий многогранника P является группой относительно суперпозиции отображений, а множество линейных симметрий - ее подгруппой. Группу симметрий многогранника P мы будем обозначать через S(Симметрии многогранника системы независимости), а ее подгруппу линейных симметрий - через L(Симметрии многогранника системы независимости).

Ранее в [3] была доказана изоморфность групп L(Симметрии многогранника системы независимости) и Aut(Симметрии многогранника системы независимости) для матроида Симметрии многогранника системы независимости, в [2] - изоморфность группы линейных симметрий многогранника паросочетаний и группы автоморфизмов соответствующего графа. Пользуясь аналогичными методами, легко доказать изоморфность групп L(Симметрии многогранника системы независимости) и Aut(Симметрии многогранника системы независимости) для произвольной системы независимости Симметрии многогранника системы независимости.

В настоящей работе показано, что группа симметрий многогранника системы независимости выписывается с помощью подгруппы L(Симметрии многогранника системы независимости) и семейства некоторых специальных преобразований пространства RE.

Рассмотрим задачу комбинаторной оптимизации на системе независимости с аддитивной целевой функцией:

Симметрии многогранника системы независимости

(1)

где ve0 - вес элемента eE. Пусть имеется симметрия многогранника P со сдвигом xH. Тогда задача (1) сводится к задаче, размерность которой не больше, чем E-H.

Ниже приведены понятия и факты, необходимые для дальнейшего изложения.

Пусть HСимметрии многогранника системы независимости. H-отображением будем называть линейное невырожденное преобразование  пространства RE, удовлетворяющее условию: для любого IСимметрии многогранника системы независимости существует такое JСимметрии многогранника системы независимости, что (xI) = xJH, где под JH подразумевается симметрическая разность множеств J и H.

Без ограничения общности будем считать, что размерность многогранника P равна n, ибо в противном случае существует элемент eЕ, не содержащийся ни в каком независимом множестве и, следовательно, вместо E можно рассматривать множество E{e} .


Информация о работе «Симметрии многогранника системы независимости»
Раздел: Математика
Количество знаков с пробелами: 9265
Количество таблиц: 4
Количество изображений: 2

Похожие работы

Скачать
90168
0
3

... , а затем и более фундаментального, одновременно и самого абстрактного (динамического) понимания симметрии. 2. 2.2.Симметрия кристаллов. Правильную, симметричную форму кристаллов издавна объясняли симметричным расположением атомов. Само существование атомов было еще гипотезой, но внешнее проявление стройного порядка заставляло предполагать внутреннюю причину. Быть может, правильные пирамиды, ...

Скачать
88628
4
18

... имеют достаточно четкое и правильное представление из собственного жизненного опыта, а формулировки которых являются слишком громоздкими.   Выводы по § 1 1.      Основные цели изучения темы «Объемы многогранников» в курсе стереометрии – развитие пространственных представлений учащихся, освоение способов вычисления практически важных величин и дальнейшее развитие логического мышления учащихся. ...

Скачать
243425
1
0

... . Реакции узлов более высокого уровня менее зависят от позиции и более устойчивы к искажениям. Структура Неокогнитрон имеет иерархическую структуру, ориен­тированную на моделирование зрительной системы челове­ка. Он состоит из последовательности обрабатывающих слоев, организованных в иерархическую структуру (рис. 10.8). Входной образ подается на первый слой и передается через плоскости, ...

Скачать
61410
3
0

... , только если, например, нагреть кристалл так, чтобы он начал плавится. Порядок, закономерность, периодичность, симметрия расположения атомов - вот что характерно для кристаллов. Во всех кристаллах, во все твердых веществах частицы расположены правильным, четким строем, выстроены симметричным, правильным повторяющимся узором. Пока есть этот порядок существует твердое тело, кристалл. Нарушен ...

0 комментариев


Наверх