5. Применение никеля в современной технике.

Широкое и разнообразное применение никеля связало с замечатель­ными свойствами этого металла. Никель — один из элементов VIII группы периодической системы, и аналогами его являются не только кобальт и железо, по и металлы группы палладия и платины.

В периодической системе никель по вертикали занимает ряд: Ni - Pd - Pt, что и определяет сходство этих металлов. Вот почему никель во мно­гих отношениях сохраняет высокую химическую стойкость, присущую платине и палладию.

Степень химической стойкости этих элементов уменьшается от пла­тины к никелю, но последний еще сохраняет ее в достаточной сте­пени для практического применения. Никель не окисляется в ат­мосферных условиях при комнатной 'температуре, он стоек в различ­ных химически активных средах — в щелочах и др. и не окисляется при нагревании до 700—800°. Никель является ферромагнитным металлом; в чистом виде он пластичен и имеет достаточную прочность. Он подвер­гается всем видам механической обработки — ковке, прокатке, штам­повке и хорошо сваривается.

Благодаря комплексу этих свойств никель в чистом виде находит разнообразное применение, особенно широкое в виде различ­ных сплавов.

Нет необходимости подробно останавливаться на известных уже по литературным данным областях применения никеля. Они приведены в указанных монографиях по металлургии никеля. С точки зрения современного применения никеля в чистом виде и в различных сплавах представляют интерес две обзорные статьи за 1953 и 1955 гг., посвященные специально никелю и его сплавам, В них приведено краткое описание научных работ но никелю и его сплавам (содержащим выше 40% никеля), выполненных за последние годы, отмечены новые области применения никеля и приводится боль­шой список литературы.

Ряд справочников и статей посвящен применению никеля в качестве легирующего элемента в сталях и сплавах с особыми физическими, хими­ческими и механическими свойствами; много работ посвя­щено разработке новых никелевых жаропрочных сплавов и их приме­нению в реактивной, газотурбинной технике .

Это свидетельствует о все возрастающем интересе к металлическому никелю и его сплавам, обусловливающем непрерывный рост потребле­ния этого металла в новых областях техники.

Остановимся кратко на некоторых примерах современного примене­ния никеля и его сплавов и на этом фоне покажем перспективы дальней­шего его развития.

5.1. Применение чистого никеля

Никель в чистом виде находит основное применение в качестве защит­ных покрытий от коррозии в различных химических средах. Защитные покрытия на железе и других металлах получаются двумя известными способами: плакировкой и гальванопластикой. Первым методом плаки­рованный слой создается путем совместной прокатки в горячем состоя­нии тонкой никелевой пластинки с толстым железным листом. Соотноше­ние толщин никеля и покрываемого металла при этом равно примерно 1:10. В процессе совместной прокатки, за счет взаимной диффузии, эти листы свариваются, и получается монолитный двухслойный или даже трехслойный металл, никелевая поверхность которого предохраняет этот материал от коррозии.

Такого рода горячий метод создания защитных никелевых покрытий широко применяется для предохранения железа и нелегированных ста­лей от коррозии. Это значительно удешевляет стоимость многих изделий и аппаратов, изготовленных не из чистого никеля, а из сравнительно де­шевого железа или стали, но покрытых тонким защитным слоем из нике­ля. Из никелированных листов железа изготовляются большие резер­вуары для транспортировки и хранения, например, едких щелочей, при­меняемые также в различных производствах химической промышленности.

Гальванический способ создания защитных покрытий никелем явля­ется одним из самых старых методов электрохимических процессов. Эта операция, широко известная в технике под названием никелирование, в принципе представляет сравнительно простой технологический процесс. Он включает в себя некоторую подготовительную работу по весьма тща­тельной очистке поверхности покрываемого металла и подготовке элек­тролитической ванны, состоящей из подкисленного раствора никелевой соли, обычно сульфата никеля. При электролитическом покрытии като­дом служит покрываемый материал, а анодом — никелевая пластинка. В гальванической цепи никель осаждается на катоде с эквивалентным переходом его из анода в раствор. Метод никелирования имеет широкое применение в технике, и для этой цели потребляется большое количество никеля.

За последнее время метод электролитического покрытия никелем при­меняется для создания защитных покрытий на алюминии, магнии, цинке и чугунах. В работе описывается применение метода никелирования алюминиевых и магниевых сплавов, в частности для защиты дюралюми­ниевых лопастей винтовых самолетов. В другой работе описано применение никелированных чугунных барабанов для сушки в бумажном производстве; установлено значительное повышение коррозионной стой­кости барабанов и повышение качества бумаги на никелированных барабанах по сравнению с обычными чугунными без никелировки.

Теоретическим и практическим вопросам электролитического никели­рования посвящены многие доклады на 4-й международной конференции по электроосаждению: получение светлых покрытий, меры предохра­нения от растрескивания покрытий, применение различных электроли­тов, влияние органических соединений на поверхность осаждаемого ни­келя и др.

Описанию оригинального метода никелирования через каталитиче­скую реакцию посвящена работа. Этим методом, отличным от элек­тролитического, удается, по мнению автора, достигать равномерного по - 40 кровного слоя независимо от формы, конфигурации и размеров никелируе­мых деталей.

В работе советских авторов изучено электроосаждение золота "при добавке никеля в виде Ni(CN)2 для получения осадков с большей твер­достью и сопротивлением истиранию. Работа дала положительные резуль­таты. Получению светлых осадков при никелировании посвящена так­же.

Плавленый, ковкий никель в чистом виде также находит широкое применение в виде листов, труб, прутков и проволоки, легко получаемых из никеля существующими технологическими операциями.

Основные потребители никеля — химическая, текстильная, пищевая и другие отрасли промышленности. Из чистого никеля изготовляются различ­ные аппараты, приборы, котлы и тиг­ли с высокой коррозионной стойкостью и постоянством физических свойств. Осо­бое значение имеют никелевые материалы в изготовлении резервуаров и цис­терн для хранения в них пищевых продуктов, химических реагентов .

Никелевые тигли широко распространены в практике аналитической хи­мии. Никелевые трубы различных размеров служат для изготовления конденсаторов, в производстве водорода, для перекачки различных хи­мически активных веществ (щелочей) в химическом производстве. Нике­левые, химически стойкие инструменты широко используются в медицине, в научно-исследовательской работе.

Сравнительно новой областью применения никеля являются новые виды техники: приборы для радиолокации, телевидения, дистанционного управления процессами (в атомной технике), в последнее время стали из­готовляться из чистого никеля.

По сообщению авторов работы, никелевые пластинки в последнее время применяют взамен кадмиевых в механических прерывателях ней­тронного пучка с целью получения нейтронных импульсов с большим значением энергии.

Имеются интересные указания о применении никелевых пластинок в ультразвуковых установках, как электрических, так и механических, а также в современных конструкциях телефонных аппаратов.

Есть некоторые области техники, где чистый никель применяется или непосредственно в порошкообразном виде или в виде различных из­делий, получаемых из порошков чистого никеля.

Одной из областей применения порошкообразного никеля являются каталитические процессы в реакциях гидрогенизации непредельных уг­леводородов, циклических альдегидов, спиртов, ароматических углеводо­родов.

Каталитические свойства никеля аналогичны тем же свойствам пла­тины и палладия. Таким образом, химическая аналогия элементов од­ной и той же группы периодической системы находит отражение и здесь. Никель, как металл более дешевый, чем палладий и платина, широко применяется в качестве катализатора при гидрогенизационных про­цессах.

Для этих целей целесообразно применять никель в виде тончайшего порошка. Он получается специальным режимом восстановления водо­родом закиси никеля в интервале температур 300—350°.

В последнее время разработан оригинальный метод получения чис­тейшего порошка никеля (до 99,8—99,9% Ni) для различных целей, в том числе и для каталитических процессов.

Вопросу получения порошкообразного никеля стандартного состава посвящена одна из советских работ. В сообщении дается описа­ние металлокерамического метода получения порошкообразного никеля высокой чистоты и применения его для электротехнических целей. Там же приводятся данные по изготовлению этим методом сплавов никеля с железом. На основе применения порошков чистого никеля было освоено производство пористых фильтров для фильтрования газов, топлива и др. в различных областях химической промышленности. Значительное коли­чество никеля в порошкообразном виде потребляется в производстве раз­личных никелевых сплавов и в качестве связки при получении металлокерамическим способом твердых и сверхтвердых сплавов.

Никель широко применяется в качестве аккумуляторных электро­дов в щелочных аккумуляторах. В Германии еще в годы войны был раз­работан метод изготовления этих электродов из прессованных и спечен­ных при определенных условиях порошков чистого никеля. Этот способ стал широко применяться в Германии и других странах.

Имеются сообщения о том, что пластинки для щелочных аккуму­ляторов, изготовленные из тонкого порошка чистейшего никеля, получен­ного через карбонил никеля, имеющие 80% пористости и большую по­верхность, показывают высокую производительность. Подобные аккуму­ляторы сохраняются без разрядки при длительном хранении (примерно до одного года).

Некоторое применение никель находит в виде неорганических соеди­нений в керамической промышленности для различных покрытий, эма­лирования и других целей.


Информация о работе «Химия никеля»
Раздел: Химия
Количество знаков с пробелами: 40045
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
46816
0
0

... при 800о. Если над сплавом, полученным восстановлением оксидов меди и никеля водяным газом (56% Н2 и 25% СО) при 350 – 400оС пропускать оксид углерода (ІІ), нагретый до 50 – 60оС, при атмосферном давлении, образуется тетракарбонил никеля Ni(CO)4. Его отгоняют, и при 180 – 200оС разлагают на металлический никель и оксид углерода (ІІ) . Последний снова вводится в процесс. Никель, полученный по ...

Скачать
442397
6
13

... с кислородом, восстановлением - отнятие кислорода. С введением в химию электронных представлений понятие окислительно-восстановительных реакций было распространено на реакции, в которых кислород не участвует. В неорганической химии окислительно-восстановительные реакции (ОВР) формально могут рассматриваться как перемещение электронов от атома одного реагента (восстановителя) к атому другого ( ...

Скачать
68067
0
0

... информационной плотности, что весьма важно для развития современных технических средств записи, накопления и хранения информации. 7. Важнейшие открытия в химии XXI века 2001 Уильям Ноулз, Риоджи Нойори и Барри Шарплесс «За исследования, используемые в фармацевтической промышленности - создание хиральных катализаторов окислительно-восстановительных реакций». 2002 Джон Фенн и Койчи Танака «За ...

Скачать
32530
6
2

... 780 °C и выдерживали 18 часов на воздухе [6]. LiFePO4 получен аналогично, но в инертной атмосфере [10]. 1.3. Смешанные фторидофосфаты щелочных и переходных металлов   Просмотр реферативных журналов, баз данных PDF-2 и ICSD обнаружил только три фазы формульного типа A+2MPO4F, из них с литием только одна: Li2NiPO4F [11]. Известны также Na2MnPO4F [12], Na2MgPO4F [13], Na4,6FeP2O8,6F0,4 [14, 15, ...

0 комментариев


Наверх