3. Потери на обратное и торцевое излучение (луч 3 и 4).

Количественно эффективность вывода оптической энергии из кристалла характеризуется коэффициентом вывода Копт определяемым отношением мощности излучения, выходящего в нужном направлении, к мощности излучения, генерируемой внутри кристалла. Так же, как и для коэффициентов int и , всегда выполняется условие 0 Копт100%.

Интегральным показателем излучеательной способности светодиода является величина внешнего квантового выхода ext. Из сказанного ясно, чтоext=int  Копт.

Перейдем к приемному блоку. Принцип действия используемых в оптронах фотприемников основан на внутреннем фотоэффекте , заключающемся в отрыве электронов от атомов внутри тела под действием электромагнитного (оптического) излучения.

Кванты света, поглощаясь в кристалле, могут вызывать отрыв электронов от атомов как самого полупроводника, так и примеси. В соответствии с этим говорят о собственном (беспримесном) и примесном поглощении (фотоэффекте). Поскольку концентрация примесных атомов мала, фотоэлектрические эффекты, основанные на собственном поглощении, всегда существеннее, чем основанные на примесном. Все используемые в оптронах фотоприемники “работают” на беспримесном фотоэффекте. Для того чтобы квант света вызывал отрыв электрона от атома, необходимо выполнение очевидных энергетических соотношений:

Eф1=hEc-Ev (2.6)

Eф2=hEc-Et (2.7)

Таким образом, собственный фотоэффект может иметь место лишь при воздействии на полупроводник излучения с длиной волны, меньшей некоторого значения гр:

гр=hc/( Ec-Ev)1.23/ Eg (2.8)

Второе равенство в (2.8) справедливо, если гр выражено в микрометрах, а ширина запрещенной зоны полупроводника Eg - в электроновольтах. Величинугр называют длинноволновой или “красной” границей спектральной чувствительности материала.

Интенсивность протекания фотоэффекта (в той спектральной области, где он может существовать) зависит от квантового выхода, определяемого отношением числа генерированных пар электрон-дырка к числу поглощенны фотонов. Анализ экспериментальных зависимостей от показывает, что в интересной для оптронов спектральной области =1.

Образование свободных носителей заряда под действием облучения проявляется в полупроводнике в виде двух фотоэлектрических эффектов: фотопроводимости (возрастание проводимости образца при засветке) и фотовольтаического (возникновение фото-ЭДС на р - n-переходе или другом виде потенциального барьера в полупроводнике при освещении). Оба эффекта используются в практике конструирования фотоприемников; для оптронов предпочтительным и доминирующим является использование фото-ЭДС-эффекта.

Основные параметры и характеристики фотоприемников (безотносительно к физической природе и конструкции этих приборов) можно подразделить на несколько групп , К оптическим характеристикам относятся площадь фоточувствительной поверхности, материал, размеры и конфигурация оптического окна; максимальный и минимальный уровни мощности излучения. К электрооптическим - фоточувствительность, степень однородности распределения чувствительности по фотоприемной площадке; спектральная плотность чувствительности (зависимость параметра, характеризующего чувствительность, от длины волны); собственные шумы фотоприемника и их зависимость от уровня засветки и диапазона рабочих частот; разрешающее время (быстродействие); коэффициент качества (комбинированный показатель, позволяющий сопоставлять различные фотоприемники друг с другом); показатель линейности; динамический диапазон. Как элемент электрической цепи фотоприемник характеризуется прежде всего параметрами его эквивалентной схемы, требованиями к рабочим режимам, наличием (или отсутствием) встроенного механизма усиления, видом и формой выходного сигнала. Прочие характеристики: эксплуатационные, надежностные, габаритные, технологические - ничего специфически “фотоприемното” не содержат.

В зависимости от характера выходного сигнала (напряжение, ток) говорят о вольтовой или токовой фоточувствительности приемника S, измеряемых соответственно в В/Вт или А/Вт. Линейность (или нелинейность) фотоприемника определяется значением показателя степени n в уравнении, связывающем выходной сигнал с входным: Uвых( или Iвых)~Pф. При n1 фотоприемник линеен; область значений Pф(от Pф max до Pф min), в которой это выполняется, определяет динамический диапазон линейности фотоприемника , выражаемый обычно в децибелах: =10 lg(Pф max /Pф min).

Важнейшим параметром фотоприемника, определяющим порог его чувствительности, является удельная обнаружительная способность D, измеряемая в Вт-1мГц1/2. При известном значении D порог чувствительности (минимальная фиксируемая мощность излучения) определяется как

Pф min=/D (2.9)

где А - площадь фоточувствительной площадки; - диапазон рабочих частот усилителя фотосигналов. Иными словами, параметр D играет роль коэффициента качества фотоприемника.

В применении к оптронам не все перечисленные характеристики оказываются одинаково важными. Как правило, фотоприемники в оптронах работают при облученностях, очень далеких от пороговых, поэтому использование параметров Pф min и D оказывается практически бесполезным. Конструктивно фотоприемник в оптроне обычно, “утоплен” в иммерсионную. среду, соединяющую его с излучателем, поэтому знание оптических характеристик входного окна теряет смысл (как правило, специально такого окна нет). Не очень важно знать и распределение чувствительности по фоточувствительной площадке, так как интерес представляют интегральные эффекты.

Рис. 2.4. Схемы измерения и семейства вольт-амперных характеристик в фотодиодном (а) и фотовентильном (б) режимах работы диода.

Механизм работы фотоприемников, базирующихся на фотовольтаическом эффекте, рассмотрим на примере планарно-эпитаксиальных фотодиодов с р - n-переходом и с р - i - n-структурой, в которых можно выделить n+- подложку, базу n- или i-типа (слабая проводимость n-типа) и тонкий р+-слой. При работе в фотодиодном режиме (рис. 2.4,а) приложенное извне напряжение заставляет подвижные дырки и электроны уходить от р - n(р - i)-перехода; при этом картина распределения поля в кристалле оказывается резко различной для двух рассматриваемых структур.

Световое излучение, поглощаясь в базовой области диода, генерирует электронно-дырочные пары, которые диффундируют к р - n-переходу, разделяются им и вызывают появление дополнительного тока во внешней цепи. В р - i - n-диодах это разделение происходит в поле i-o6лaсти и вместо процесса диффузии имеет место дрейф носителей заряда под влиянием электрического поля. Каждая генерированная электронно-дырочная пара, прошедшая через р - n-переход, вызывает прохождение во внешней цепи заряда, равного заряду электрона. Чем больше облученность диода, тем больше фототок. Фототок протекает и при смещении диода в прямом направлении (рис. 2.4,а), однако уже при небольших напряжениях он оказывается намного меньше прямого тока, поэтому его выделение оказывается затруднительным.

Рабочей областью вольт-амперных характеристик фотодиода является III квадрант на рис. 2.4,а; соответственно этому в качестве важнейшего параметра выступает токовая чувствительность

(2.10)

Второе равенство в (2.10) получено в предположении линейной зависимости Iф=f(Pф), а третье - при условии пренебрежения темновым током (), что для кремниевых фотодиодов обычно выполняется.

Если освещать фотодиод без приложения к нему внешнего смещения, то процесс разделения генерируемых электронов и дырок будет протекать благодаря действию собственного встроенного поля р - n-перехода. При этом дырки будут перетекать в р-область и частично компенсировать встроенное поле р - n-перехода. Создается некоторое новое равновесное (для данного значения: Pф) состояние, при котором на внешних выводах диода возникает фото-ЭДС Uф. Если замкнуть освещенный фотодиод на некоторую нагрузку, то он будет отдавать в нее полезную электрическую мощность Рэ.

Характеристическими точками вольт-амперных характеристик диода, работающего в таком - фотовентильном - режиме, являются ЭДС холостого хода Uxx и ток короткого замыкания Iкз (рис. 2.4,б).

Схематически фотодиод в вентильном режиме работает как своеобразныйный вторичный источник питания, поэтому его определяющим параметром является КПД преобразования световой энергии в электрическую:

КПД=Pэ/APф=aUxxIкз/ Apф (2.11)

В фотовентильном режиме действует важный класс фотоэлектрических приборов - солнечные батареи.



Информация о работе «Оптроны и их применение»
Раздел: Физика
Количество знаков с пробелами: 48126
Количество таблиц: 0
Количество изображений: 11

Похожие работы

Скачать
50268
3
3

... ). Перспективы развития микроэлектроники Функциональная микроэлектроника. Оптоэлектроника, акустоэлектроника, магнетоэлектроника, биоэлектроника и др. Содержание лекций 1 Цели и задачи курса “Электронные, квантовые приборы и микроэлектроника”. Физика полупроводников. p-n- переходы. Полупроводниковые диоды. Разновидности и характеристики. 2 Транзисторы. Принцип действия, разновидности и ...

Скачать
21910
0
1

... интегральным микросхемам. Они позволяют выполнять логическую обработку большого числа сигналов, воспроизводить сложные функции усиления, генерации и преобразования электрических сигналов. Тиристор – электропреобразовательный полупроводниковый прибор, содержащий три или более р-п-перехода. По числу внешних электродов тиристоры делятся на: двухэлектродные – динисторы и трехэлектродные – тринисторы. ...

Скачать
17216
0
5

дания высокоэффективных средств отображения информации. Очень важным преимуществом элементов оптоэлектроники является то, что они оптически связаны, а электрически изолированы между собой. Это обеспечивает надежное согласование различных оптоэлектронных цепей, способствует однонаправленности передачи информации, помехоустойчивости каналов передачи сигналов. Изготовление полупроводниковых ...

Скачать
15929
0
7

... на определенной длине, а впоследствии расходящихся волноводов, что существенно для создания направленных ответвителей и частотно-избирательных фильтров в системах интегральной оптики. Рис 7. Оптический полосковый микроволновод с прямоугольным поперечным сечением: 1 – подложка; 2 – диэлектрическая пленка. Оптоэлектронные микросхемы. На основе оптоэлектроники разработано большое числ

0 комментариев


Наверх