4. Потери информации, связанные с неправильным хранением архивных данных.

5. Ошибки обслуживающего персонала и пользователей :

- случайное уничтожение или изменение данных;

- некорректное использование программного и аппаратного обеспечения, ведущее к уничтожению или изменению данных;

В зависимости от возможных видов нарушений работы сети (под нарушением работы я также понимаю и несанкционированный доступ) многочисленные виды защиты информации объединяются в три основных класса :

- средства физической защиты, включающие средства защиты кабельной системы, систем электропитания, средства архивации, дисковые массивы и т.д.

- программные средства защиты, в том числе: антивирусные программы, системы разграничения полномочий, программные средства контроля доступа.

- административные меры защиты, включающие контроль доступа в помещения, разработку стратегии безопасности фирмы, планов действий в чрезвычайных ситуациях и т.д.

Следует отметить, что подобное деление достаточно условно, поскольку современные технологии развиваются в направлении сочетания программных и аппаратных средств защиты. Наибольшее распространение такие программно-аппаратные средства получили, в частности, в области контроля доступа, защиты от вирусов и т.д.

Концентрация информации в компьютерах - аналогично концентрации наличных денег в банках - заставляет все более усиливать контроль в целях защиты информации. Юридические вопросы, частная тайна, национальная безопасность - все эти соображения требуют усиления внутреннего контроля в коммерческих и правительственных организациях. Работы в этом направлении привели к появлению новой дисциплины: безопасность информации. Специалист в области безопасности информации отвечает за разработку, реализацию и эксплуатацию системы обеспечения информационной безопасности, направленной на поддержание целостности, пригодности и конфиденциальности накопленной в организации информации. В его функции входит обеспечение физической (технические средства, линии связи и удаленные компьютеры) и логической (данные, прикладные программы, операционная система) защиты информационных ресурсов.

Сложность создания системы защиты информации определяется тем, что данные могут быть похищены из компьютера и одновременно оставаться на месте; ценность некоторых данных заключается в обладании ими, а не в уничтожении или изменении.

Обеспечение безопасности информации - дорогое дело, и не столько из-за затрат на закупку или установку средств, сколько из-за того, что трудно квалифицированно определить границы разумной безопасности и соответствующего поддержания системы в работоспособном состоянии.

Если локальная сеть разрабатывалась в целях совместного использования лицензионных программных средств, дорогих цветных принтеров или больших файлов общедоступной информации, то нет никакой потребности даже в минимальных системах шифрования/дешифрования информации.

Средства защиты информации нельзя проектировать, покупать или устанавливать до тех пор, пока не произведен соответствующий анализ. Анализ риска должен дать объективную оценку многих факторов (подверженность появлению нарушения работы, вероятность появления нарушения работы, ущерб от коммерческих потерь, снижение коэффициента готовности системы, общественные отношения, юридические проблемы) и предоставить информацию для определения подходящих типов и уровней безопасности. Коммерческие организации все в большей степени переносят критическую корпоративную информацию с больших вычислительных систем в среду открытых систем и встречаются с новыми и сложными проблемами при реализации и эксплуатации системы безопасности. Сегодня все больше организаций разворачивают мощные распределенные базы данных и приложения клиент/сервер для управления коммерческими данными. При увеличении распределения возрастает также и риск неавторизованного доступа к данным и их искажения.

Шифрование данных традиционно использовалось правительственными и оборонными департаментами, но в связи с изменением потребностей и некоторые наиболее солидные компании начинают использовать возможности, предоставляемые шифрованием для обеспечения конфиденциальности информации.

Финансовые службы компаний (прежде всего в США) представляют важную и большую пользовательскую базу и часто специфические требования предъявляются к алгоритму, используемому в процессе шифрования. Опубликованные алгоритмы, например DES (см. ниже), являются обязательными. В то же время, рынок коммерческих систем не всегда требует такой строгой защиты, как правительственные или оборонные ведомства, поэтому возможно применение продуктов и другого типа, например PGP (Pretty Good Privacy).

Шифрование.

Шифрование данных может осуществляться в режимах On-line (в темпе поступления информации) и Off-line (автономном). Остановимся подробнее на первом типе, представляющем большой интерес. Наиболее распространены два алгоритма.

Стандарт шифрования данных DES (Data Encryption Standart) был разработан фирмой IBM в начале 70-х годов и в настоящее время является правительственным стандартом для шифрования цифровой информации. Он рекомендован Ассоциацией Американских Банкиров. Сложный алгоритм DES использует ключ длиной 56 бит и 8 битов проверки на четность и требует от злоумышленника перебора 72 квадриллионов возможных ключевых комбинаций, обеспечивая высокую степень защиты при небольших расходах. При частой смене ключей алгоритм удовлетворительно решает проблему превращения конфиденциальной информации в недоступную.

Алгоритм RSA был изобретен Ривестом, Шамиром и Альдеманом в 1976 году и представляет собой значительный шаг в криптографии. Этот алгоритм также был принят в качестве стандарта Национальным Бюро Стандартов.

DES, технически является СИММЕТРИЧНЫМ алгоритмом, а RSA -

- АСИММЕТРИЧНЫМ, то есть он использует разные ключи при шифровании и дешифровании. Пользователи имеют два ключа и могут широко распространять свой открытый ключ. Открытый ключ используется для шифрованием сообщения пользователем, но только определенный получатель может дешифровать его своим секретным ключом; открытый ключ бесполезен для дешифрования. Это делает ненужными секретные соглашения о передаче ключей между корреспондентами. DES определяет длину данных и ключа в битах, а RSA может быть реализован при любой длине ключа. Чем длиннее ключ, тем выше уровень безопасности (но становится длительное и процесс шифрования и де шифрования). Если ключи DES можно сгенерировать за микросекунды, то примерное время генерации ключа RSA - десятки секунд. Поэтому открытые ключи RSA предпочитают разработчики программных средств, а секретные ключи DES - разработчики аппаратуры.


Физическая защита данных

Кабельная система

Кабельная система остается главной “ахиллесовой пятой” большинства локальных вычислительных сетей: по данным различных исследований, именно кабельная система является причиной более чем половины всех отказов сети. В связи с этим кабельной системе должно уделяться особое внимание с самого момента проектирования сети.

Наилучшим образом избавить себя от “головной боли” по поводу неправильной прокладки кабеля является использование получивших широкое распространение в последнее время так называемых структурированных кабельных систем, использующих одинаковые кабели для передачи данных в локальной вычислительной сети, локальной телефонной сети, передачи видеоинформации или сигналов от датчиков пожарной безопасности или охранных систем. К структурированным кабельным системам относятся, например, SYSTIMAX SCS фирмы AT&T, OPEN DECconnect компании Digital, кабельная система корпорации IBM.

Понятие “структурированность” означает, что кабельную систему здания можно разделить на несколько уровней в зависимости от назначения и месторасположения компонентов кабельной системы. Например, кабельная система SYSTIMAX SCS состоит из :

- Внешней подсистемы (campus subsystem)

- Аппаратных (equipment room)

- Административной подсистемы (administrative subsystem)

- Магистрали (backbone cabling)

- Горизонтальной подсистемы (horizontal subsystem)

- Рабочих мест (work location subsystem)

Внешняя подсистема состоит из медного оптоволоконного кабеля, устройств электрической защиты и заземления и связывает коммуникационную и обрабатывающую аппаратуру в здании (или комплексе зданий). Кроме того, в эту подсистему входят устройства сопряжения внешних кабельных линий и внутренними.

Аппаратные служат для размещения различного коммуникационного оборудования, предназначенного для обеспечения работы административной подсистемы.

Административная подсистема предназначена для быстрого и легкого управления кабельной системы SYSTIMAX SCS при изменении планов размещения персонала и отделов. В ее состав входят кабельная система (неэкранированная витая пара и оптоволокно), устройства коммутации и сопряжения магистрали и горизонтальной подсистемы, соединительные шнуры, маскировочные средства и т.д.

Магистраль состоит из медного кабеля или комбинации медного и оптоволоконного кабеля и вспомогательного оборудования. Она связывает между собой этажи здания или большие площади одного и того же этажа.

Горизонтальная система на базе витого медного кабеля расширяет основную магистраль от входных точек административной системы этажа к розеткам на рабочем месте.

И, наконец, оборудование рабочих мест включает в себя соединительные шнуры, адаптеры, устройства сопряжения и обеспечивает механическое и электрическое соединение между оборудованием рабочего места и горизонтальной кабельной подсистемы.

Наилучшим способом защиты кабеля от физических (а иногда и температурных и химических воздействий, например, в производственных цехах) является прокладка кабелей с использованием в различной степени защищенных коробов. При прокладке сетевого кабеля вблизи источников электромагнитного излучения необходимо выполнять следующие требования :

а) неэкранированная витая пара должна отстоять минимум на 15-30 см от электрического кабеля, розеток, трансформаторов и т.д.

б) требования к коаксиальному кабелю менее жесткие - расстояние до электрической линии или электроприборов должно быть не менее 10-15 см.

Другая важная проблема правильной инсталляции и безотказной работы кабельной системы - соответствие всех ее компонентов требованиям международных стандартов.

Наибольшее распространение в настоящее время получили следующие стандарты кабельных систем :

Спецификации корпорации IBM, которые предусматривают девять различных типов кабелей. Наиболее распространенным среди них является кабель IBM type 1 -

- экранированная витая пара (STP) для сетей Token Ring.

Система категорий Underwriters Labs (UL) представлена этой лабораторией совместно с корпорацией Anixter. Система включает пять уровней кабелей. В настоящее время система UL приведена в соответствие с системой категорий EIA/TIA.

Стандарт EIA/TIA 568 был разработан совместными усилиями UL, American National Standarts Institute (ANSI) и Electronic Industry Association/Telecommunications Industry Association, подгруппой TR41.8.1 для кабельных систем на витой паре (UTP).

В дополнение к стандарту EIA/TIA 568 существует документ DIS 11801, разработанный International Standard Organization (ISO) и International Electrotechnical Commission (IEC). Данный стандарт использует термин “категория” для отдельных кабелей и термин “класс” для кабельных систем.

Необходимо также отметить, что требования стандарта EIA/TIA 568 относятся только к сетевому кабелю. Но реальные системы, помимо кабеля, включают также соединительные разъемы, розетки, распределительные панели и другие элементы. Использования только кабеля категории 5 не гарантирует создание кабельной системы этой категории. В связи с этим все выше перечисленное оборудование должно быть также сертифицировано на соответствие данной категории кабельной системы.

Системы электроснабжения.

Наиболее надежным средством предотвращения потерь информации при кратковременном отключении электроэнергии в настоящее время является установка источников бесперебойного питания. Различные по своим техническим и потребительским характеристикам, подобные устройства могут обеспечить питание всей локальной сети или отдельной компьютера в течение промежутка времени, достаточного для восстановления подачи напряжения или для сохранения информации на магнитные носители. Большинство источников бесперебойного питания одновременно выполняет функции и стабилизатора напряжения, что является дополнительной защитой от скачков напряжения в сети. Многие современные сетевые устройства - серверы, концентраторы, мосты и т.д. - оснащены собственными дублированными системами электропитания.

За рубежом корпорации имеют собственные аварийные электрогенераторы или резервные линии электропитания. Эти линии подключены к разным подстанциям, и при выходе из строя одной них электроснабжение осуществляется с резервной подстанции.

Системы архивирования и дублирования информации.

Организация надежной и эффективной системы архивации данных является одной из важнейших задач по обеспечению сохранности информации в сети. В небольших сетях, где установлены один-два сервера, чаще всего применяется установка системы архивации непосредственно в свободные слоты серверов. В крупных корпоративных сетях наиболее предпочтительно организовать выделенный специализированный архивационный сервер.

Хранение архивной информации, представляющей особую ценность, должно быть организовано в специальном охраняемом помещении. Специалисты рекомендуют хранить дубликаты архивов наиболее ценных данных в другом здании, на случай пожара или стихийного бедствия.

Защита от стихийных бедствий.

Основной и наиболее распространенный метод защиты информации и оборудования от различных стихийных бедствий - пожаров, землетрясений, наводнений и т.д. - состоит в хранении архивных копий информации или в размещении некоторых сетевых устройств, например, серверов баз данных, в специальных защищенных помещениях, расположенных, как правило, в других зданиях или, реже, даже в другом районе города или в другом городе.

Программные и программно-аппаратные методы защиты.

Защита от компьютерных вирусов.

Вряд ли найдется хотя бы один пользователь или администратор сети, который бы ни разу не сталкивался с компьютерными вирусами. По данным исследования, проведенного фирмой Creative Strategies Research, 64 % из 451

опрошенного специалиста испытали “на себе” действие вирусов. На сегодняшний день дополнительно к тысячам уже известных вирусов появляется 100-150 новых штаммов ежемесячно. Наиболее распространенными методами защиты от вирусов по сей день остаются различные антивирусные программы.

Однако в качестве перспективного подхода к защите от компьютерных вирусов в последние годы все чаще применяется сочетание программных и аппаратных методов защиты. Среди аппаратных устройств такого плана можно отметить специальные антивирусные платы, которые вставляются в стандартные слоты расширения компьютера. Корпорация Intel в 1994 году предложила перспективную технологию защиты от вирусов в компьютерных сетях. Flash-память сетевых адаптеров Intel EtherExpress PRO/10 содержит антивирусную программу, сканирующую все системы компьютера еще до его загрузки.

Защита от несанкционированного доступа.

Проблема защиты информации от несанкционированного доступа особо обострилась с широким распространением локальных и, особенно, глобальных компьютерных сетей. Необходимо также отметить, что зачастую ущерб наносится не из-за “злого умысла”, а из-за элементарных ошибок пользователей, которые случайно портят или удаляют жизненно важные данные. В связи с этим, помимо контроля доступа, необходимым элементом защиты информации в компьютерных сетях является разграничение полномочий пользователей.

В компьютерных сетях при организации контроля доступа и разграничения полномочий пользователей чаще всего используются встроенные средства сетевых операционных систем. Так, крупнейший производитель сетевых ОС - корпорация Novell - в своем последнем продукте NetWare 4.1 предусмотрел помимо стандартных средств ограничения доступа, таких, как система паролей и разграничения полномочий, ряд новых возможностей, обеспечивающих первый класс защиты данных. Новая версия NetWare предусматривает, в частности, возможность кодирования данных по принципу “открытого ключа” (алгоритм RSA) с формированием электронной подписи для передаваемых по сети пакетов.

В то же время в такой системе организации защиты все равно остается слабое место: уровень доступа и возможность входа в систему определяются паролем. Не секрет, что пароль можно подсмотреть или подобрать. Для исключения возможности неавторизованного входа в компьютерную сеть в последнее время используется комбинированный подход - пароль + идентификация пользователя по персональному “ключу”. В качестве “ключа” может использоваться пластиковая карта (магнитная или со встроенной микросхемой - smart-card) или различные устройства для идентификации личности по биометрической информации - по радужной оболочке глаза или отпечатков пальцев, размерам кисти руки и так далее.

Оснастив сервер или сетевые рабочие станции, например, устройством чтения смарт-карточек и специальным программным обеспечением, можно значительно повысить степень защиты от несанкционированного доступа. В этом случае для доступа к компьютеру пользователь должен вставить смарт-карту в устройство чтения и ввести свой персональный код. Программное обеспечение позволяет установить несколько уровней безопасности, которые управляются системным администратором. Возможен и комбинированный подход с вводом дополнительного пароля, при этом приняты специальные меры против “перехвата” пароля с клавиатуры. Этот подход значительно надежнее применения паролей, поскольку, если пароль подглядели, пользователь об этом может не знать, если же пропала карточка, можно принять меры немедленно.

Смарт-карты управления доступом позволяют реализовать, в частности, такие функции, как контроль входа, доступ к устройствам персонального компьютера, доступ к программам, файлам и командам. Кроме того, возможно также осуществление контрольных функций, в частности, регистрация попыток нарушения доступа к ресурсам, использования запрещенных утилит, программ, команд DOS.

Одним из удачных примеров создания комплексного решения для контроля доступа в открытых системах, основанного как на программных, так и на аппаратных средствах защиты, стала система Kerberos. В основе этой схемы авторизации лежат три компонента:

- База данных, содержащая информацию по всем сетевым ресурсам,

пользователям, паролям, шифровальным ключам и т.д.

- Авторизационный сервер (authentication server), обрабатывающий все запросы

пользователей на предмет получения того или иного вида сетевых услуг.

Авторизационный сервер, получая запрос от пользователя, обращается к базе

данных и определяет, имеет ли пользователь право на совершение данной

операции. Примечательно, что пароли пользователей по сети не передаются, что также повышает степень защиты информации.

- Ticket-granting server (сервер выдачи разрешений) получает от авторизационного сервера “пропуск”, содержащий имя пользователя и его сетевой адрес, время запроса и ряд других параметров, а также уникальный сессионный ключ. Пакет, содержащий “пропуск”, передается также в зашифрованном по алгоритму DES виде. После получения и расшифровки “пропуска” сервер выдачи разрешений проверяет запрос и сравнивает ключи и затем дает “добро” на использование сетевой аппаратуры или программ.

Среди других подобных комплексных схем можно отметить разработанную Европейской Ассоциацией Производителей Компьютеров (ECMA) систему Sesame (Secure European System for Applications in Multivendor Environment), предназначенную для использования в крупных гетерогенных сетях.

Защита информации при удаленном доступе.

По мере расширения деятельности предприятий, роста численности персонала и появления новых филиалов, возникает необходимость доступа удаленных пользователей (или групп пользователей) к вычислительным и информационным ресурсам главного офиса компании. Компания Datapro свидетельствует, что уже в 1995 году только в США число работников постоянно или временно использующих удаленный доступ к компьютерным сетям, составит 25 миллионов человек. Чаще всего для организации удаленного доступа используются кабельные линии (обычные телефонные или выделенные) и радиоканалы. В связи с этим защита информации, передаваемой по каналам удаленного доступа, требует особого подхода.

В частности, в мостах и маршрутизаторах удаленного доступа применяется сегментация пакетов - их разделение и передача параллельно по двум линиям что делает невозможным “перехват” данных при незаконном подключении “хакера” к одной из линий. К тому же используемая при передаче данных процедура сжатия передаваемых пакетов гарантирует невозможности расшифровки “перехваченных” данных. Кроме того, мосты и маршрутизаторы удаленного доступа могут быть запрограммированы таким образом, что удаленные пользователи будут ограничены в доступе к отдельным ресурсам сети главного офиса.

Разработаны и специальные устройства контроля доступа к компьютерным сетям по коммутируемым линиям. Например, фирмой AT&T предлагается модуль Remote Port Security Device (PRSD), представляющий собой два блока размером с обычный модем: RPSD Lock (замок), устанавливаемый в центральном офисе, и RPSD Key (ключ), подключаемый к модему удаленного пользователя. RPSD Key и Lock позволяют установить несколько уровней защиты и контроля доступа, в частности:

- шифрование данных, передаваемых по линии при помощи генерируемых цифровых ключей;

- контроль доступа в зависимости от дня недели или времени суток (всего 14 ограничений).

Широкое распространение радиосетей в последние годы поставило разработчиков радиосистем перед необходимостью защиты информации от “хакеров”, вооруженных разнообразными сканирующими устройствами. Были применены разнообразные технические решения. Например, в радиосети компании

RAM Mobil Data информационные пакеты передаются через разные каналы и базовые станции, что делает практически невозможным для посторонних собрать всю передаваемую информацию воедино. Активно используются в радио сетях и технологии шифрования данных при помощи алгоритмов DES и RSA.

Заключение.

В заключении хотелось бы подчеркнуть, что никакие аппаратные, программные и любые другие решения не смогут гарантировать абсолютную надежность и безопасность данных в компьютерных сетях.

В то же время свести риск потерь к минимуму возможно лишь при комплексном подходе к вопросам безопасности.


Билет 10 11

Вопрос 2

Основы логические устройства компьютера (сумматор).


Базовые логические элементы.

Базовые логические элементы реализуют рассмотренные выше три основные логические операции,

Логический элемент «И»- логическое умножение,

Логический элемент «ИЛИ»- логическое сложение,

Логический элемент «НЕ» – инверсию.

Поскольку любая логическая операция, может быть представлена в виде комбинации трех основных, любые устройства компьютера, позволяющие обработку или хранение информации, могут быть собраны из базовых логических элементов как из кирпичиков.

Логические элементы компьютера оперируют с сигналами, представляющими собой электрические импульсы. Есть импульс- логическое значение сигнала 1, нет импульса- значение 0. На вход логических элементов поступают сигналы –аргументы, на выходе появляются сигнал-функция.

Преобразование сигнала логическим элементом задается таблицей состояния, которая фактически является таблицей истинности, соответствующей логической функции.

Логический элемент «И».

На входы А и В логического элемента последовательно подаются четыре пары сигналов различных значений, на выходу получается последовательность из четырех сигналов, значения которых определяются в соответствие с таблицей истинности операции логического умножения.


И А (0,0,1,1)

F (0,0,0,1)

В (0,1,0,1)


Логический элемент «ИЛИ».

На входы А и В логического элемента последовательно подаются четыре пары сигналов различных значений, на выходе получается последовательность из четырех сигналов, значения которых определяются в соответствие с таблицей истинности операции логического сложения.


ИЛИ

А(0,0,1,1)

F (0,1,1,1)

В(0,1,0,1)


Логическое элемент «НЕ».

На вход А логического элемента последовательно подаются два сигнала, на выходе получается последовательность из двух сигналов, значение которых определяются в соответствии с таблицей истинности логической инверсии.

НЕ


А(0,1) F(1,0)

Сумматор двоичных чисел.

В целях максимального упрощения работы компьютера все многообразие математических операций в процессоре сводится к сложению двоичных чисел. Поэтому главной частью процессора является сумматор, которых и обеспечивает такое сложение.

Полусумматор. Вспомним, что при сложении двоичных чисел образуется сумма в данном разряде, при этом возможен перенос в старший разряд. Обозначим слагаемые (А,В), перенос (P) и сумму (S). Таблица сложения одноразрядных двоичных чисел с учетом переноса в старший разряд выглядит следующим образом,


Слагаемые перенос сумма

A B P S

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0











Из этой таблицы сразу видно, что перенос может реализовать с помощью операции логического умножения,

P=A&B.

Получим теперь формулу для вычисления суммы. Значения суммы более всего совпадают с результатом операции логического сложения (кроме случая, когда на вход подаются две единицы, а на выходе должен получится нуль).

Н
ужный результат достигается, если результат логического сложения умножить на инвертированный перенос. Таким образом, для определения суммы можно применить следующее выражение,

Теперь, на основе полученных логических выражений, можно построить из базовых логических элементов схему полусумматора.

По логической формуле переноса легко определить, что для получения переноса необходимо использовать логический элемент «И».

Анализ логической формулы для сумма показывает, что на выходе должен стоять элемент логического умножения «И», который имеет два входа. На один из входов подается результат логического сложения исходных величин АВ, т.е. на него должен подаваться сигнал с элемента логического сложения «ИЛИ».

Н
а второй вход требуется подать результат инвертированного логического умножения исходных сигналов,

То есть на второй вход подается сигнал с элемента «НЕ», на вход которого получает сигнал с элемента логического умножения «И».


И А(0,0,1,1) P(0,0,0,1)

В(0,1,0,1)


НЕ

И

0,0,0,1 1,1,1,0


ИЛИ

S(0110)




Данная схема, называется полусумматором, так как реализует суммирование одноразрядных двоичных чисел без учета переноса из младшего разряда.

Полный одноразрядный сумматор. Полный одноразрядный сумматор должен иметь три входа, А, В- слагаемые и P0- перенос из предыдущего разряда и два выхода, сумма S и перенос P. Таблица сложения в этом случае будет иметь следующий вид,

A B P0 P S

0 0 0 0 0

0 1 0 0 1

1 0 0 0 1

1 1 0 1 0

0 0 1 0 1

0 1 1 1 0

1 0 1 1 0

1 1 1 1 1











Идея построена полного сумматора точно такая же, как и полусумматора. Перенос реализуется с помощью формулы для получения переноса,

Л

огическое выражение для вычисления суммы в полном сумматоре принимает следующий вид,

Много разрядный сумматор процессора состоит из полных одноразрядных сумматоров. На каждый разряд ставится одноразрядный сумматор, причем выход (перенос) сумматора младшего разряда подключен к входу сумматора старшего разряда.

Регистр (триггер).

Важнейшей структурной единицей оперативной памяти компьютера, а также внутренних регистров процессора является триггер. Это устройство позволяет запоминать, хранить и считывать информацию (каждый триггер может хранить 1 бит информации).

Триггер можно построить из двух логических элементов «ИЛИ» и двух элементов «НЕ».


или

не

S(1) 1 0



1



или

не


0

0 1


R Q


В обычном состоянии на входы триггера подан сигнал «0», и триггер хранит «0». Для записи «1» на вход S (установочный) подается сигнал «1». Последовательно рассмотрев прохождение сигнала по схеме, видно что триггер переходит в это состояние и будет устойчиво находится в нем и после того, как сигнал на входе S исчезнет. Триггер запомнил «1», т.е. с выхода триггера Q можно считать «1».

Для того, чтобы сбросить информацию подготовится к приему новой, подается сигнал «1» на вход R (сброс), после чего триггер возратится к исходному “нулевому” состоянию.


Билет11

Воппрос1

Моделирование как метод научного познания.

Моделирование в научных исследованиях стало применяться еще в глубокой древности и постепенно захватывало все новые области научных знаний : техническое конструирование , строительство и архитектуру , астрономию , физику , химию , биологию и , наконец , общественные науки . Большие успехи и признание практически во всех отраслях современной науки принес методу моделирования ХХ в . Однако методология моделирования долгое время развивалась независимо отдельными науками . Отсутствовала единая система понятий, единая терминология . Лишь постепенно стала осознаваться роль моделирования как универсального метода научного познания .

Термин "модель" широко используется в различных сферах человеческой деятельности и имеет множество смысловых значений . Рассмотрим только такие "модели", которые являются инструментами получения знаний .

Модель - это такой материальный или мысленно представляемый объект, который в процессе исследования замещает объект-оригинал так, что его непосредственное изучение дает новые знания об объекте-оригинале .

Под моделирование понимается процесс построения , изучения и применения моделей . Оно тесно связано с такими категориями , как абстракция , аналогия , гипотеза и др. Процесс моделирования обязательно включает и построение абстракций , и умозаключения по аналогии, и конструирование научных гипотез.

Главная особенность моделирования в том , что это метод опосредованного познания с помощью объектов-заместителей . Модель выступает как своеобразный инструмент познания , который исследователь ставит между собой и объектом и с помощью которого изучает интересующий его объект . Именно эта особенность метода моделирования определяет специфические формы использования абстракций , аналогий , гипотез , других категорий и методов познания .

Необходимость использования метода моделирования определяется тем, что многие объекты ( или проблемы , относящиеся к этим объектам ) непосредственно исследовать или вовсе невозможно, или же это исследование требует много времени и средств.

Моделирование - циклический процесс . Это означает , что за первым четырехэтапным циклом может последовать второй , третий и т.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется . Недостатки , обнаруженные после первого цикла моделирования , обусловленные малым знанием объекта и ошибками в построении модели , можно исправить в последующих циклах . В методологии моделирования , таким образом , заложены большие возможности саморазвития .


Билет 12

Вопрос 1

Формализация. Построение математических моделей.

В повседневной жизни человека, придерживающегося раз и навсегда усвоенных правил, мы именуем формалистом, а его поведение- формальным. Такое поведение, будучи жестким и однозначно заданным, приходит в противоречие с непредсказуемостью жизненных ситуаций.

Но то, что плохо для человека, может быть хорошо для компьютера. Простые повторяющиеся ситуации, автоматическое открывание и закрывание дверей, проверка большого числа слов по словарю на предмет правильности написания, поиск в огромном массиве результатов измерения, удовлетворяющих некоторому условию, и многие другие циклические информационные действия способны вогнать человека в сон. И здесь в полном мере наиболее существенная «черта характера» компьютера- неукоснительное выполнение инструкции программы, однозначно определяющей последовательность его действий. То качество, которое не вызывает восторга в человеке, в машине, такой, как компьютер, необходимо, как говорится, по роду деятельности.

Представьте, что произошло бы, если бы компьютер вдруг забыл при подсчете результатов переписи населения учесть тех, кто в данный момент работает за границей, или при составлении прогноза погоды увлекся выяснением вопроса о влиянии на погоду в Москве запуска очередного космического корабля с Байконура. Появление компьютера

Метод математических моделей.

Если попытаться одной фразой ответить на вопрос «каким образом современная математика применяется к изучению физических, астрономических, биологических, экономических, гуманитарных и других явлений», то ответ будет таким «с помощью построения и анализа математических моделей изучаемого явления».

У каждого из нас слово «модель»вызывает различные ассоциации. У одних- это действующие модели роботов, станков, у других- муляж животного, внутрении органы человека, у третьих- модель самолета продуваемая потоком воздуха в аэродинамической трубе.

Иногда вместо слова «модель» употребляется иные слова «макет», «копия», «слепок» и другие. Однако во все эти слова вкладывается приблизительно один и тот же смысл- он состоит в том, что сложное, многогранное явление реального мира заменяется его упрощенной схемой.

Среди множества всевозможных моделей особую роль играют математические модели. Так называют приближенное описание какого- либо явления внешнего мира, выраженное с помощью математической символики и заменяющее изучение этого явления исследованием и решением математических задач. Таким образом, математика применяется не непосредственно к реальному объекту, а к его математической модели.

Изучение явлений с помощью математических моделей называется математическим моделированием. Схематический процесс математического моделирования представлен в следующей таблице.


Явления внешнего мира


Его приближенное описание. Запись основных свойств и соотношений между ними на математическом языке, формулировка основных математических задач.


Решение математических задач, исследование решений

Выводы, новые свойства изучаемого явления, прогнозы, сравнения известными результатами.






Уточнение модели



Хорошо построенная маиематическая модель обладает удивительным свойством- ее изучение дает новые, неизвестные ренее знания об изучаемом объекте или явлении.

Пример. Русский ученый А.А.фридман (1888-1925), анализируя уравнения общей теории относительности, составленные Аэйнштейном (1879-1955), в 1922г. обнаружил, что кроме решений, не зависящих от времени, уравнения Аэйнштейна имеют еще и другие решения, которые от времени зависят. Это привело к открытию того, что Вселенная расширяется и сжимается, т.е. пульсирует. Представления о пульсировании Вселенной стало основой всей современной космологии.

Математические модели, спомощью которых иследование явлений внешнего мира сводится к решению математических задач, занимают ведушее место среди других методов исследования и позволяют на только объяснить наблюдаемые явления, как это было, например, с движением планеты Уран, но и заглянуть туда, где еще в принципе не могло быть опытных, экспериментальныхданных. Именно так было при проведении первых атомных и водородных взрывов. И это еще не все. Сущуствуют сферы человеческой деятельности, где проведение экспериментов, получение экспериментальных результатов принципиально невозможно.

Например, невозмажно экспериментировать над озоновым слоем Земли. Невозможно опредилить мару антропогенного воздействия на ноосферу, достаточную для ее разрущения,- неизвестно, найдется ли в зтом случае на Земле место для человечества.

Развитие математического аппарата внедрение мощных современных компьютеров позволили математическому моделированию, успешно зарекомендовавшему себя в технике, физике, астрономии и космологии, проникнуть сегдня практически во все облисти человеческой деятельности- в экономику и биологию, экологию и лингвистику, медицину и психологию, историю, социалогию т.д. По мере усложнения объектов исследования роль математических моделей изучаемых явлений существенно возрастает. Появляется целая иерархия математических моделей, каждая из которых описывает изучаемое явление глубже, полнее,всестороннее.


Билет12

Вопрос2

Технология мультимедиа (аппаратные и программные средства).

Термин «мультимедиа» можно перевести на русский язык как «много сред» (иногда переводят как много носителей). Мультимедиа –это специальная технология, позволяющая с программного обеспечения и технических средств объединить на вашем компьютере обычную информацию(текст и графику) со звуком и движущимися изображениями (вплоть до показа видеофильмов). В представлении пользователя технологию мультимедиа образуют,

Аппаратные средства компьютера, обеспечивающие доступ к данным и воспроизведение мультимедийной информации,

Программные средства, обслуживающие доступ и воспроизведение,

Носители информации в мультимедиа.

Существует определенный минимум аппаратных средств, которыми должен располагать ваш компьютер, чтобы его можно было считать мультимедийным. Согласно спецификации, разработанной международным советом по маркетингу продуктов мультимедиа, для нормальной эксплуатации современных приложений, рекомендуется ПК со следующими характеристиками,

Микропроцессор не ниже 486 с тактовой частотой от 25 МГц.

Оперативная память не менее 4 Мб и емкость жесткого диска от 160 Мб.

Видеосистема с разрешением не менее 640*480 и количеством воспроизводимых цветов 65536.

Звуковая карта и акустические колонки,

Привод (дисковод).

Аппаратура. Для воспроизведения видеозаписи (без звука), строго говоря, не требуется специальной аппаратуры, прикладные программы могут показать кино и на обычном компьютере. (правда, для качественной демонстрации полно цветных видеофильмов все же применяют особые видео платы, причем некоторые из них обладают собственным процессором).

Иначе обстоит дело со звукам. Музыкальные звуки обладают четырьмя основными свойствами, а именно 1) высотой, 2)громкостью,3)длительностью, 4)тембром (или краской).

Высота звука пропорциональна частоте основного тона (гармонического колебания), а тембр определяется гармоническим спектром других частот (обертонов), входящих в состав естественного звука.

У любого компьютера имеется встроенный динамик, который может по командам программы генерировать чистый звук различной частоты и длительности. С помощью программных средств (basic, C и др.) вы сами можете легко описать одноголосную мелодию, но в ней будет отсутствовать главное обертоны. Изменяются и драйверы для воспроизведения музыки и речи через встроенный динамик, однако качество звука все равно получается низким.

Основа современной мультимедийной аппаратуры- специальные звуковые карты вместе с акустическими системами (колонками, громкоговорителями, динамиками).

Звуковые карты функционируют совместно со специальными программами и файлами, обеспечивая запись, воспроизведение и синтез звука.

Вы уже знаете, что вся информация в ПК (в том числе, звук и видео) представлена исключительно в дискретной, цифровой форме. Поэтому одна из функции звуковой карты- преобразовать «оцифрованный» звук в непрерывный (аналоговый) электрический сигнал, который и поступает на выход динамика. При записи звука, наоборот, аналоговый сигнал от микрофона (или другого источника звука) преобразуется в дискретную фонограмму.

Для синтеза звука применяются два метода,

FM- синтез, основанный на частотной модуляции звукового сигнала .

WT- синтез, основанный на использовании специальной таблицы волн и позволяющий добиваться более качественного звучания.

В составе винд. Имеются специальные приложения, 0


Если в состав компьютера входят мультимедиа устройства (звуковая плата с микрофоном и колонками и CD-ROM дисковод), то оказывается возможной работа с мультимедиа программами, входящих в состав Windows.

Программа звукозапись играет роль цифрового магнитофона и позволяет записывать звук, т.е. дискретизировать звуковой сигнал, и сохранить их в звуковой файл формате (wave). Эта программа позволяет также редактировать, микшировать(накладывать звуковые файлы друг на друга), а также воспроизводить их.

С помощью программы звукозапись можно записать звук различного качества путем выбора режима двоичного кодирования звука (количество бит, частота дискретизации, моно/стерео).

Программа универсальный проигрыватель воспроизводит звуковые, видео, а также анимационные файлы. Программа лазерный проигрыватель предназначен для проигрывания аудио компакт-дисков.

Программа регулятор громкости позволяет настроить параметры воспроизведения звука.


Билет 13

Вопрос 1

Этапы решения задач на компьютере.

Компьютер (ЭВМ)-это универсальное (многофункциональное) электронно программно – управляемое устройство для хранения, обработки и передачи информации.

Человек использует компьютер для решения самых разнообразных информационных задач : работа с текстами, создание графических изображений, получение справок из базы данных, табличные расчеты, гашения математической задачи, расчет технической конструкции и многое другое. Для их решения в распоряжении пользователя ЭВМ имеется обширное программное обеспечение: системное ПО (ядром которого является операционная система), прикладное ПО (программы, предназначены для пользователя) и системы программирования (средства для создания программ на языках программирования).

Исходя из условия задачи, пользователь решает для себя вопрос о том, каким программным средством он воспользуется. Если в составе доступного прикладного ПО имеется программа, подходящая для решения данной задачи, то пользователь выбирает ее в качестве инструмента (СУБД, табличный процессор, математический пакет и др.). в случае же, если готовым прикладным ПО воспользоваться нельзя, приходится прибегать к программированию на универсальных языках, т. е. выступать в роли программиста.

Принято делить программистов на две категории: системные программисты и прикладные программисты. Системные программисты занимаются разработкой системного программного обеспечения (операционных систем и пр.), систем программирования (трансляторов и пр.), инструментальных средств прикладного ПО (редакторов СУБД и пр.). Прикладные программисты составляют программы для решения практических (прикладных ) задач: технических, экономических, физических и др.

Обсудим технологию решения прикладной задачи на ЭВМ. Часто задача, которую требуется решить, сформулирована не на математическом языке.

Работа по решению прикладной задачи на компьютере проходит через следующие этапы:

Постановка задачи;

Математическая формализация;

Построение алгоритма;

Составления программы на языке программирования;

Отладка и тестирование программы;

Проведение расчетов и анализ полученных результатов.

Эту последовательность называют технологической цепочкой решения задачи на ЭВМ.

В чистом виде программированием, т. е. разработкой алгоритма и программы, здесь является лишь 3-й, 4-й и 5-й этапы. Часто в эту цепочку включают еще один пункт: составление сценария интерфейса (т. е. взаимодействия между пользователем и компьютером во время исполнения программы).


Дадим описание каждого из перечисленных этапов.

Постановка задачи.

На этапе постановке задачи должно быть четко определенно, что дано и что требуется найти. Так, если задача конкретная (например, решить уравнение 2x2+3x+5=0, где коэффициенты уравнения- константы), то под постановкой задачи понимает ответ на два вопроса: какие исходные данные известны и что требуется определить. Если задача обобщенная (например, решить квадратное уравнение ax2+bx+c=0), то при постановке задачи понадобится еще ответ на третий вопрос: какие данные допустимы. Итак, постановка задачи «решить квадратное уравнение ax2+bx+c=0» выглядит следующим образом.

Дано: a, b, c,-коэффициенты уравнения.

Найти: x1, x2- корни уравнения.

С
вязь: при a=/0 и d=b2-4ac>=0,



Иначе действительных корней нет.


Математическая формализация.

Компьютер решает задачу, выполняя команды нашего алгоритма, выраженные на языке программирования. Но мы знаем, какой вид приняли эти команды, попав в память компьютера. Они имеют вид электрических сигналов, соответствующих двоичному способу кодирования. Поэтому обработка этих сигналов, выполнение требуемых операций происходит в компьютере по законам арифметических действий в двоичной системе счисления и булевой алгебры. Это возможно, если все необходимые для решения задачи действия формализованы, т. е. представлены как математические операции и соотношения между входящими в них переменными. Задача переводится на язык математических формул, управления, отношений. Далеко не всегда эти формулы очевидны. Нередко их приходится выводить самому или отыскивать в специальной литературе. Если решение задачи требует математического описания какого-то реального объекта, явления или процесса, то формализация равносильна получению соответствующей математической модели. В случае большого числа параметров, ограничений, возможных вариантов исходных данных модель явления может иметь очень сложное математическое описание (правда, реальное явление еще более сложно), но если такого описания не будет, то переложить решение задачи на компьютер вряд ли удастся. Поэтому часто построение математической модели требует упрощения требований задачи. Например, для решения квадратного уравнения, когда необходимо получить значения его корней (если они есть), мы можем воспользоваться известными из курса алгебры формулами для x1 и x2. На уроках математики доказывалась правильность метода решения квадратного уравнения путем вычисления по формулам:




Нам уже известно, что этот метод решения дает искомые значения корней при любых доступных значениях исходных данных- коэффициентов A, B, C. Поэтому мы строим алгоритм, основываясь на нем.

Построение алгоритма.

Для этого может быть использован язык блок-схем или какой-нибудь псевдокод, например учебный алгоритмический язык.

Составление алгоритма на языке программирования.

Первые три этапа это работа без компьютера. Дальше следует собственно программирование на определенном языке в определенной системе программирования.

Отладка и тестирование программы.

Под отладкой программы понимается процесс испытания работы программы и исправления обнаруженных при этом ошибок. Обнаружить ошибки, связанные с нарушением правил записи программы на ЯПВУ (синтаксические и семантические ошибки), помогает используемая система программирования. Пользователь получает сообщение об ошибке, исправляет ее и снова повторяет попытку использовать программу.

Проверка на компьютере правильности алгоритма производится с помощью тестов. Тест –это конкретный вариант значений исходных данных, для которого известен ожидаемый результат. Прохождение теста – необходимое условие правильности программы. На тестах проверяется правильность реализации программой запланированного сценария. Например, если это программа решения квадратного уравнения, то нужно проверить ее работоспособность как для варианта значений коэффициентов A, B, C, при которых получается неотрицательный дискриминант D=B2-4AC>=0, так и при таком варианте a, b, c, когда d-0

{x, если х_0

То y:=-x

Конец ветвления

Вывод y

Кон.

X




x>-

y;=x


Y:=-x



Y




Эту же самую задачу можно решить путем использования неполной формы ветвления.



Да


Нет




X


Y: =-x



Y: =x



XB



B>C

A>C



D:=A

D:=C


D:=B

D:=C





D





Билет 16

Вопрос 1

Циклические алгоритмы. Команда повторения.

Алгоритм - понятное и точное предписание исполнителю выполнить коночную последовательность команд, приводящую от исходных данных к искомому результату.

Всякий алгоритм составляется из простых команд, команд- обращений к вспомогательным алгоритмам и структурных команд. К “ структурным “ относятся команда ветвления и команда цикла.

Цикл-это команда исполнителю многократно повторить указанную последовательность команд.

Однако слово “ многократно” не значит “до бесконечности”. Организация циклов, никогда не приводящая к остановке в выполнении алгоритма, является нарушением требования его результативности- получения результата за конечное число шагов.


P


Да нет

Рассмотрим графическое представления циклического алгоритма. В него входят в качестве базовых следующие структуры: блок проверки условия P и блок S, называемый телом цикла, Если тело цикла S расположено после проверки условий P (цикл с предусловием). То может случится, что при определенных условиях блок S не выполнится ни разу. Такой вариант организации цикла, управляемый предусловием, называется цикл - пока.

Пока P повторить

S

Конец цикла



S


Если условие P не выполняется, то происходит выход из цикла на команду, записанную после строки “конец цикла “, Здесь условие P – это условие на продолжение цикла.

S





Возможен другой случай, когда тело цикла S

Выполняется по крайней один раз и будет

повторятся до тех пор, пока не станет истинным

условие P.такая организация цикла, когда его

тело расположено перед проверкой условия P,

носит название цикла с постусловием, или

цикла – до. Истинность условия P в этом случае- условие окончания цикла.

Отметим, что возможна ситуация с постусловием и при организации цикла –пока. Итак, цикла –до завершается, когда условие P становится истинным, а цикл –пока –когда P становился ложным. Другими словами, цикл-до выполнятся ”до” истинности условия, а цикл – пока выполняется, указанное логическое выражение остается истинным. Современные языки программирования имеют достаточный набор операторов, реализующих как цикл-пока, так и цикл – до.

Отметим основное отличительное свойство циклических алгоритмов; количество действий, исполняемы в процессе работы такого алгоритма, может существенно повышать количество команд, составляющих тело цикла.

В блок - схемах алгоритмов (графическом представление алгоритмов) и на учебном алгоритмическом языке цикла пока представляется так:



Да нет


Пока на полке есть книги взять книгу с полки конец цикла


На полке есть книги?







Да нет



А, В ,Н

Х=А

У=tg x

Цикл – до представляется аналогично.

Пример.

З

Y, x

адача построить таблицу значений

Функции y=tg x на отрезке [A, B] с шагом

H

X= x+ h

.

Дано: A- начальное значение аргумента,

B

X > B

- конечное значение аргумента,

H- шаг изменения аргумента.

Найти: Y- значение функции.

Связь: y= t g x, где x= a, a+ h, …, B.

Здесь тело цикла состоит из двух команд: вычисление у и печать значения аргумента х и соответствующего ему значения функции у.

Команда x= x+ h осуществляется переход к следующему значению аргумента х. Проверка условий, стоящая после выполнения цикла (X> b), показывает, что это цикл – до.


Билет17

Вопрос 1

Разработка алгоритмов методов методом последовательной детализации.

Разработка алгоритмов методом последовательной детализации.

Алгоритм—это понятное и точное предписание исполнителю выполнить конечную последовательность команд, приводящую от исходных данных к искомому результату.

Всякий алгоритм составляет из простых команд, команд-обращений к вспомогательным алгоритмам и структурных команд.

Вспомогательным алгоритмом называется алгоритм некоторых подзадач по отношению к исходной (основной) задаче. Алгоритм решения основной задачи называется основным алгоритмом. Основные алгоритм содержит команды обращения к вспомогательным алгоритмам. Если составление вспомогательного алгоритма оказывается достаточно сложным, тогда в нем могут быть выделены подзадачи, для которых строятся вспомогательные алгоритмы второго уровня и т.д.

Последовательная детализация –это построение алгоритма “сверху вниз”. Сначала строится основной алгоритм, и в нем записываются обращения к вспомогательным алгоритмам первого уровня. Затем составляются эти вспомогательные алгоритмы, в которых могут быть записаны обращения к вспомогательным алгоритмам второго уровня, и.д. Вспомогательные алгоритмы последнего уровня не содержат обращений к другим вспомогательным алгоритмам.


Последовательность составления алгоритмов - сверху вниз


ОСНОВНОЙ АЛГОРИТМ


ВСПОМ. АЛГОРИТМ 1 ВСПОМ. АЛГ.2 1-Й УРОВЕНЬ


ВСПОМ. АЛГ.1.1 ВСПОМ. АЛГ.1.2 ВСПОМ. АЛГ. 2.1 2-Й УРОВЕНЬ

И Т. Д.

Методы последовательной детализации применяется при любом конструировании сложных объектов. Это естественная логическая последовательность мышления конструктора: постепенное углубление в детали. В нашем случае речь идет тоже о конструировании, но только не технических устройств, а алгоритмов. Достаточно сложный алгоритм другим способом практически построить невозможно. Такая методика позволяет организовать работу коллектива программистов над сложным проектом. Например, руководитель группы строит основной алгоритм, а разработку вспомогательных алгоритмов и составление подпрограмм поручает своим сотрудникам.

Вспомогательные алгоритмы, следовательно, создаются, когда возникает необходимость разбиения задачи на ряд более простых задач или когда есть необходимость многократного использования одного и того же набора действий в одном или разных алгоритмах.


Метод последовательной детализации путем разбиения задачи на подзадачи лежит в основе технологии структурного программирования и широко применяется при использовании структурных языков программирования, таких, как Паскаль или структурные версии Бейсика.


Согласно концепции структурного программирования, вспомогательный алгоритм должен:

Иметь заголовок ( имя ), с помощью которого его можно вызвать (обратится к нему чтобы начать его выполнение) из двух вспомогательных или основного алгоритмов ( это нужно для “состыковки” алгоритмов);

Возвращать управление тому алгоритму, из которого он был вызван, т. е. После выполнения вспомогательного алгоритма должно продолжатся, выполнение вызвавшего его алгоритма с той точки, в которой он был прерван;

иметь возможность вызвать другие алгоритмы;

быть относительно небольшим.

Желательно также, чтобы вспомогательный алгоритм:

имел один вход ( т. е. Его выполнение всегда начиналось в одной точке, независимо от того, откуда и при каких условиях он был выхван0 и один выход. Это гарантирует его замкнутость и упрощает работу с состыкованными алгоритмами;


обладает единственной функцией (например, вычислить недельный заработок сотрудника, напечатать отчет о состоянии оборудования), что служит ключом к хорошо спроектированному итоговому алгоритму? Таким оброзом, при проектировании основного алгоритма нужно сначала опредилить необходимый набор функции, а затем разработать вспомогательный алгоритмы.

При составлении и использовании вспомогательных алгоритмов важно знать, что является для них исходными данными (аргументами) и результатами их выполнения. Иногда команды вызова вспомогательного алгоритма содержат указания на имена переменных, значения которых являются для него исходными данными, и имена переменных, значения которых будут являться результатами его выполнения и использоваться в дальнейшем вне его. Иногда результатом выполнения вспомогательного алгоритма может стать значение некоторой сигнальной переменной (флажка), сообщающее, например, об истинности какого-то условия или наличии какого-либо факта, скажем корней уравнения (т. е. Значение флажка может быть равно 1или0). При записи программы для компьютера на языках программирования высокого уровня вспомогательные алгоритмы реализуются в виде программ. Правила обращения к ним и возврата в основную программу определяются конкретным языкам программирования. Программы общего назначения могут объединиться в библиотеки программ (процедур или функций). В языках программирования высокого уровня ветвление реализуется с помощью условного оператора.


Билет 18

Вопрос 1

Основы языка программирования

Назначение программирования- разработка программ управления компьютером с целью решения различных информационных задач.

Для составления программ существуют разнообразные языки программирования.

Язык программирования- это фиксированная система обозначения для описания алгоритмов и структур данных.

Популярными языками программирования сегодня являются, Паскаль, Бейсик, Си, Фортран и др.

Для создания и исполнения на компьютере программы, написанной на языке программирования, используются системы программирования.

Система программирования- это программное обеспечение компьютера, предназначенное для разработки, отладки и исполнения программ, записанных на определенном языке программирования.

Существуют системы программирования на Паскаль, Бейсике и других языках. Разработка любой программы начинается с построением алгоритма решения задачи.

«Родным» языком программирования ЭВМ является язык машинных команд (ЯМК). Самые первые ламповые ЭВМ понимали только этот язык. В программах на ЯМК данные обозначаются их адресами в памяти машины, выполняемые операции – числовыми кодами. Программист сам должен заботится о расположении в памяти ЭВМ команд программы и данных.

Современные программисты так не работают. Для программирования на современных ЭВМ применяются системы программирования (СП) программное обеспечение делится на три части.

--системное ПО

прикладное ПО

--системы программирования.

Системное ПО это операционное системы, диалоговые оболочки типа NC.

Прикладное ПО- это многочисленные редакторы, электронные таблицы, информационные системы, математические пакеты, экспертные системы и многое другое, с чем работают абсолютное большинство пользователей.

Системы программирования предназначены для создания программ управления компьютером.

Системы программирования позволяют использовать на ЭВМ программы, написанные на языке более высокого уровня, чем язык машинных команд.

Понятие уровня языка программирования связано со степенью его удаленности от языка процессора ЭВМ и приближенности к естественному человеческому языку, к формальному языку предметной области (чаще всего- математики). Чем выше уровень, тем дальше от ЭВМ и ближе к человеку. Этот принцип схематически отражает рисунок.


Естественный язык, язык математики



ЯПВУ

Автокод- ассемблер


Язык машинных команд.



ПРОЦЕССОР


Язык машинных команд –это язык самого низкого уровня. Первые языки программирования, отличаются от ЯМК, появились на машинах первого поколения и назывались Автокодами.

Автокод –это машинное – ориентированный язык символического программирования.

Одна команда на Автокоде соответствует одной машинной команде. Работая на Автокоде, программист освобожден от необходимости распределять память под программу и величены, ему не приходится работать с адресами ячеек. Переменные величины и числовые константы обозначаются так же как в математике, коды операций- мнемоническими (буквенными) обозначениями.

Начиная с машин третьего поколения, языки такого типа стали называть Ассемблерами. В наше время на Ассемблере программируют довольно редко, это как правило, делают системные программисты.

Сокращение ЯПВУ расшифровывается так, языки программирования высокого уровня. Сегодня большинство программистов работают именно на этих языках. Наиболее распространенными являются языки Паскаль, Бейсик, СИ, Фортран.

Вот пример записи одной и той же команды сложения двух чисел на трех языках разного уровня, ЯМК, Автокод, Паскаль.

C:= A+D Паскаль

ADD A,B,C Автокод

01 24 28 2С ЯМК

Видно, как с повышением уровня языка повышается «понятность» команд (по –английски слово ADD означает «сложить»). Однако, чем понятнее для человека, тем непонятнее для процессора ЭВМ. Процессор понимает только ЯМК, это его «родной язык». Человеку же легче писать программы на языках более высокого уровня.

Как сделать так, чтобы человек мог писать программы на Автокоде или Паскале, а компьютер мог исполнять эти программы? Ответ на поставленный вопрос такой же, как ответ на вопрос: «как мне общаться с японцем, если я не знаю японского языка?». Нужен переводчик, по-английски переводчик –translator.

Программы- переводчики с Автокода, Паскаля, Фортрана и других языков на язык машинных команд называются трансляторами.

Таким образом компьютер сам производит перевод под управлением программы- транслятора. Процесс перевода программы на язык машинных команд называется трансляцией. Прежде чем выполнить, например, программу на Паскале, ее нужно оттранслировать. Трансляцию можно представить как спуск с верхней ступеньки языка на самую первую ступеньку- ЯМК.


C:=A+B ПАСКАЛЬ


Трансляция с Паскаля


ADD A, B,C АВТОКОД

Тран. с автокода



01 24 28 2С ЯМК



Транслятор является обязательным элементом любой системы программирования. Первые СП включали в себя только трансляторы. Затем к транслятору стали добавляться различные сервисные средства, текстовые редакторы, отладчики, системы обслуживания программных библиотек, средства организации дружественного интерфейса с пользователем.


Билет18

Вопрос 2

Статические информационные модели (модели состояния), динамические информационные модели (модели поведения).

Понятие о системе. Окружающий нас мир состоит из множества различных объектов, каждый из которых имеет разнообразные свойства, и при этом объекты взаимодействуют между собой. Например, такие объекты, как планеты нашей Солнечной системы имеют различные своиства (массу, геометрические размера и т.д.) и по закону всемирного тяготения взаимодействуют с солнцем и друг с другом.

Планеты входят в состав более крупного объекта= Солнечную систему, а Солнечная система –в состав нашей галактики. С другой стороны, планеты состоят из атомов различных химических элементов, а атомы- из элементарных частиц. Можно сделать вывод, что практически каждый объект состоит имз других объектов , т.е. представляет систему.

Система состоит из объектов, которые называются элементами системы. Между элементами системы существуют различные связи и отношения. Например, компьютер является системой, состоящей из различных устройств, при этом устройства связаны между собой и аппаратно (физически подключены друг к другу), и функционально (между устройствами происходит обмен информацией).

Важным признаком системы является ее целостность функционирования. Компьютер нормально работает до тех пор, пока в его состав и исправны устройства (процессор, память, системная плата и тд.). если удалить одно из них, например, процессор, компьютер выйдет из строя, т.е. прекратит свое существование как система.

Статические информационные модели.

Любая система существует в пространстве и времени. Состояние системы характеризуется ее структурой, т.е. составом, свойствами элементов, их отношениями и связями между собой. Так, структура Солнечной системы характеризуется составом выходящих в нее объектов (Солнце, планеты и пр.), их свойствами (например, размерами) и взаимодействием (силами тяготения).

Модели, описывающие систему в определенный момент времени, называется статическими информационными моделями.

В физике, например, статические информационные модели описывают простые механизмы, в биологии- классификацию животного мира, в химии- строение молекул и т.д.

Динамически информационные модели.

Состояние систем измеряется во времени, т.е. происходят процессы изменения и развития систем. Так, планеты движутся, изменяется их положение относительно Солнца и друг друга, Солнце, как любая другая звезда, развивается, меняется ее химический состав, излучения и д.т.

Модели, описывающие процессы изменения и развития системы, называются динамическими информационными моделями.

В физике динамические информационные модели описывают движение тел, в биологии- развитие организмов или популяций животных, в химии- процессы прохождения химических реакций и т.д.

Информационные модели процессов управления.

Изменение сложных систем во времени имеет свои особенности.

Так, для поддержания своей жизнедеятельности человек постоянно получает информацию из внешнего мира с помощью органов чувств, обрабатывает ее с помощью мозга и управляет своим поведением (например, перемещаясь в пространстве, избегая опасности).

В процессе функционирования сложных систем входящие в них объекты постоянно обмениваются информацией. Рассмотрим, например, систему компьютер. В компьютере информация хранится во внешней памяти (на гибких или жестких магнитных дисках).

В процессе записи информации дисковод обеспечивает запись информации на дискету, т.е. объект дисковод изменяет состояние другого объекта Дискета. В кибернетике (науке об управлении) Дисковод называется управляющим объектом, а Дискета- управляемым.

Модели, описывающие информационные процессы управления в сложных системах , называются информационными моделями управления..


Билет 19

Вопрос 1

Текстовый редактор. Назначение, основные функции.

Стремление упростить работу с различными видами текстов (служебными бумагами, конспектами лекций, газетами, журналами, книгами и т. д.)привело к созданию большого количества программного обеспечения, ориентированного на решение этих проблем и называемого текстовым редакторами (ТР) или текстовыми процессорами. Среди профисиональных ТР наибольшее распространение получили «Лексикон», ChiWriter, Multiedit, Microsoft Word, TeX. Имеется значительное число разнообразных ТР для школьных компьютеров (например, для УКНЦ это Edit, Writer).

Общее назначение ТР- ввод текстов в компьютер и их редактирование, сохранение на ВЗУ и печать на бумаге.

Всякий текст- это последовательность символов. Символьный алфавит компьютера содержит 256 знаков. Один символ занимает 1 байт. Все символы в алфавите пронумерованы от 0 до 256. Каждому номеру соответствует 8- разрядный двоичный код от 00000000 до 11111111.этот код просто номер символа в двоичной системе счисления. Таблицу, в которой ставятся в соответствие символы, их десятичные номера и двоичные коды, называется таблицей кодировки. Наиболее распространенной таблицей на персональных компьютерах является код ASCII. Не все коды отображаются на экране в виде символов. Некоторые являются управляющими- управляют печатью или выводом на экран.

Простейшие ТР сохраняют тексты в форме текстовых файлов. Текстовый файл состоит только из символов, входящих в таблицу кодировки (1 символ- 1байт). Текст разбит на строки. Каждая строка заканчивается кодом конца строки.

Обычная пишущая машинка может печатать только единственным шрифтом. В текстовом документе, созданном на компьютере с помощью ТР, могут использоваться разнообразные шрифты. Современные текстовые редакторы имеют достаточно большие наборы шрифтов. У каждого шрифта есть свое назначение. Например: Arial, Times New Roman, Serif и др. буквы одного шрифта могут иметь разные начертания. Различаются обычное (прямое) начертание, курсив, полужирное начертания. Кроме того, представляется возможность подчеркивания текста. Вот несколько примеров:

Это обычное начертания шрифта Times New Roman

Это курсив шрифта

Это полужирное начертания шрифта

Это полужирный курсив шрифта

Это пример подчеркнутого текста

Текстовый редактор дают возможность управлять размером символов.

Следует иметь в виду, что если ТР позволяет менять шрифты, начертания и размеры, то в памяти приходится хранить не только коды символов, но и указание на способ их изображения. Это увеличивает размер файла с текстом. Информацию о шрифтах воспринимают программы, управляющие выводом текста на экран или на печать. Именно они и создают изображение символов в нужной форме.

Практически все редакторы, распространенные в нашей стране, позволяют использовать как русский, так и латинский алфавит.

This is example of English text.

Современные ТР дают возможность пользователю работать одновременно с несколькими текстовыми документами, используя многооконный режим. В многооконном режиме ТР выделяет для каждого документа отдельную область памяти, а на экране- отдельное окно. Окна на экране могут располагаться каскадом (друг за другом) или мозаикой (параллельно в плоскости экрана). Активным окном является то, в котором в данный момент находится курсор.

С помощью специальных команд ( нажатия определенных клавиш) производится переход от одного активного окна к другому. При этом можно переносить или копировать фрагменты текста из одних документов (окон) а другие.

Среда ТР

Рабочие поле ТР это экран дисплея, на котором отображаются все действия, выполняемые ТР. Важным элементом среды ТР является интерфейс- это те средства , с помощью которых пользователь может общаться с ТР и управлять им. На сегодняшний день наиболее предпочтительным является интерфейс в форме меню, из которого специальным маркером (выделенным цветом) можно выбрать те или иные команды ТР.

Одновременно с меню на экране высвечивается строка состояния, в которой дается информация о текущем состоянии ТР (режим работы, позиция курсора и пр.).

Текст, обрабатываемый с помощью ТР, хранится в оперативной памяти и визуально может быть представлен в виде рулона бумаги (разделенного на страницы в некоторых ТР), длина и ширина которого в большинстве случаев не позволяют целиком наблюдать его на экране. Таким обрезом, экран можно считать своеобразным окном, через которое пользователь просматривает текст. Для перемещения этого окна по тексту используется специальные клавиши. Есть ТР, позволяющие открывать несколько таких окон «над» соответствующим количеством текстов.

Кроме основной памяти (рулона), где ТР хранит обрабатываемый текст, в его расположении находятся ряд дополнительных листов памяти, к которым относятся лист удаленных строк, буфер («карман») для хранения копируемых фрагментов текста, справочник (подсказка, или help), словарь.

Курсор- световое пятно на экране- место активного воздействия на рабочее поле. Передвигая курсор, можно перемещать окно по основной памяти (тексту). Наличие курсора в рабочем поле указывает на то, что исполнитель находится в режиме ввода – редактирования текста. Координаты курсора в тексте (или на страницы)- номера строки и столбца- отображается в строке состояния.

Режим работы ТР.

ввод- редактирование текста. Состояние ТР, находящегося в этом режиме, отражается в строке состояния. Отметим основные компоненты состояния: координаты курсора, вставка/удаление, строчные/заглавные (нижний/верхний регистр), шрифт (рус./лат.), разметка строки (абзац, разрешенное число символов), выравнивание текста по краям или по центру, перенос.

Форматирование. Работа в этом режиме позволяет скомпоновать текст (фрагмент текста) в требуемом виде, установив отступы, красную строку, число позиций в строке и т. д.

Обращение за подсказкай. При переходе в этот режим на экране открывается дополнительное справочное окно, содержащее краткую справочную информацию о работе в ТР. Подсказка может содержать несколько листов текста, в этом случае указывается способ перелистывания.

Орфографическая проверка. Этот режим работы возможен лишь при наличии словаря. При проверке текста фиксируются слова, отсутствующие в словаре, что является косвенным свидетельством орфографической ошибки. Режим орфографической проверки может быть совмещен с режимом редактирования.

Обмен с ВЗУ возможен в двух направлениях:сохранение (запись, или save) и загрузка (считывание, или load) текста, который при хранении на ВЗУ называется файлом (текстовым файлом). При этом указывается путь к необходимому каталогу.

Печать. В этом режиме осуществляется вывод текста на бумагу. С помощью ТР можно управлять принтером, определив шрифт, вид печатаемой страницы (поля, число строк), способ нумерации страниц.

Система команд ТР.

Систему команд ТР можно условно разделить на следующие группы команд:

Команды интерфейса- вход в меню и выход из него, перемещение маркера по меню, выбор нужного пункта меню;

Команда изменения состояния ТР, позволяющие в режиме редактирования вобрать шрифт, нижний/верхний регистр, режим вставки/замены и т. д.;

Команда перемещения по тексту, которые разделяются на две групп: пошаговое перемещение (стрелки вправо, влево, вверх, вниз) и быстрое перемещение по тексту (переход в начало/конец строки, текста, листание страниц и т. д.);

Команды посимвольного редактирования, позволяющие внести исправления в текст (вставить, удалить, заменить символ и т. д.);

Команда работы со строками, позволяющие манипулировать со строками (удалить, вставить, рассечь на две, «склеить»);

Поиск по образцу служит для отыскания в тексте мест, содержащих указанный набор символов (букву, слово, фразу и т. д.);

Копирование включает в себя выделение копируемого фрагмента текста и помещением его в буфер, воспроизведение содержимого буфера в требуемом месте текста;

Форматирование позволяет придать тексту требуемый вид: установить число символов в строке, выровнять по краям, выделить поля и красную строку и т. д.

В большинстве ТР команды можно выполнить двумя способами:

С помощью функциональных и управляющих клавиш;

Выбором пунктов меню.


Билет 20

Вопрос 1

Графический редактор. Назначения и основные функции.

Рассмотрим применение ЭВМ для получения графических изображений. Под словами графическое изображение понимаются самые разнообразные рисунки, картинки, чертежи, графики и пр., которые получаются на экране компьютера, а также могут быть выведены на печать. На экране рисунки могут быть статическими (неподвижными) или динамическими (движущимися). В последнее время машинная графика выделилась в самостоятельный раздел информатики с многочисленными приложениями. Средствами машинной графики создается не только печатная продукция, но и рекламные ролики на телевидении, мультфильмы.

Объясним, как кодируется изображение в памяти компьютера. Представим себе рисунок, на который наложена сетка с квадратными ячейками. В каждую ячейку попадает маленький фрагмент рисунка. Если брать сетку все гуще (ячейки- все меньше), то в конце концов в каждой ячейке окажется одноцветная точка. Тогда весь рисунок представляется как совокупность таких точек (мозаика из точек).

В графическом режиме (в отличие от текстового) можно получать любые изображения, управляя состоянием любой точки экрана.

Точеный элемент экрана компьютера называется пикселем (от латинского pixel- picture element). Совокупность пикселей на экране образует графическую сетку. Очевидно, чем гуще эта сетка, тем лучше будет качество изображения.

Дисплеи бывают монохромные (черно- белые) и цветные. Каждый пиксель на цветном экране- это совокупность трех точек (зерен) разного цвета: красного, зеленного и синего. Эти зерна расположены очень близко друг к другу- так, что зрения человека их не различает. Нам они кажутся слившимися в одну точку. Из сочетания красного, зеленного и синего цветов складываются вся красочная палитра на экране. Цветные дисплеи такого типа называют RGB- мониторами (от первых букв английских слов red- красный, green- зеленый, blue- синий). Электронная пушка цветного дисплея испускает три луча. Каждый луч вызывает свечение зерна только одного цвета. Для этого в дисплее используется специальная фокусирующая система.


Информация о графическом изображении хранится в видеопамяти. В видеопамяти содержится информация о состоянии каждого пикселя экрана. Если каждый пиксель может принимать только два состояния: светится- не светится (белый- черный), то для кодировки достаточно одного бита памяти на пиксель (1- белый, 0 черный). Если нужно кодировать большее количество состояний (различную яркость или различные цвета),то одного бита на пиксель недостаточно. Для кодирования 4 цветов в видеопамяти используется 2 бита на каждый пиксель; для кодирования 8 цветов- 3 бита, 16 цветов- 4 бита и т. д. Количество цветов (К) и размер кода в битах (b) связана формулой: K=2b.

Из трех базовых цветов можно получить 8 различных цветов большее число красок получают путем управлением интенсивностью базовых цветов. На современных высококачественных дисплеях используется палитра более чем из 16 млн. цветов. Требуемый размер видеопамяти в этом случае- несколько мегабайтов.

Минимально необходимый объем видеопамяти зависит от размера сетки пикселей и от количества цветов. Обычно в видеопамяти помещается несколько страниц (кадров) изображения одновременно.

Для получения графических изображений на ЭВМ используется специальное программное обеспечения- графически редактор (ГР).

Рисовать изображения можно в режиме ручной прорисовки или с помощью базовых инструментов (примитивов). Выбор в качестве инструмента «кисти» позволяет наносить изображения на «холст» от руки. В этом случае «художник» использует курсор, управляемый клавишами или манипулятором типа « мышь». Очень трудно с помощью мыши от руки провести прямую линию. Используя в качестве инструмента «линейку», достаточно просто соединить прямой любые две точки рабочего поля.

Можно без труда нарисовать окружность, квадрат или многоугольник произвольной формы. Для этого нужно выбрать в таблице инструментов графический примитив и установить курсор в соответствующую точку рабочего поля. Для прямоугольника в эту точку будет помещен левый верхний угол, для круга и эллипса- центр. При этом «художник» может подобрать желаемый размеры примитива.

При помощи графического редактора «художник» должен иметь возможность строить изображения путем компоновки их из других, ранее созданных изображений, объединяя их с текстом и изменяя цвета. Поэтому в графическом редакторе должен быть реализованы функции, позволяющие:

«вырезать», «склеивать» и «стирать» произвольные части изображения;

применять для рисования произвольные «краски» и «кисти»;

запоминать рисунки на внешних носителях, осуществляя их поиск воспроизведение;

увеличивать фрагменты изображения для проработки мелких деталей;

добавлять к рисункам текст и таким образам создавать красочные объявления, рекламные плакаты, визитные карточки и т. д.

Графический редактор позволяет также масштабировать (изменять размер) изображение, выполнять его перемещение и поворот.


Для работы ГР необходимо наличие следующих аппаратных средств:

Графический адаптер (другие названия; контролер дисплея, видеокарта) представляет собой единство двух компонент;видеопамяти и дисплейного процессора.

Функция видеопамяти- хранить видеоинформацию.

Функция дисплейного процессора- выводить содержимое видеопамяти на экран. Если изображения на экране постоянно не подновлять, то оно гаснет (за время порядка нескольких миллисекунд). Таким образом, изображения должно выводиться на экран с такой частотой, чтобы глаз не успевал заметить угасание картинки, дисплейный процессор непрерывно просматривает видеопамять и выводит ее содержимое на экран 50-60 раз в секунду.

Графический дисплей обеспечивает отображения графической информации на экране электронно- лучевой трубки. В настоящее время широко распространение получили растровые дисплеи. Экран растрового дисплея разбит на фиксированное число точек, которые образуют матрицу («растр») из фиксированного числа строк и столбцов. Слово «растр» восходит к латинскому- rastrum- “грабли, мотыга». Растром обычно называют чередование прозрачных и непрозрачных полос по сходству со следом греблей, имеющих вид параллельных борозд. Растровые дисплеи работают в прямоугольной декартовой системе координат. Каждый пиксель характеризует координатами- порой чисел (x, y). Первое число X задает расстояние от начала координат до заданной точки экрана по горизонтали (в пикселях), второе числоY- по вертикали. В большинстве ЭВМ требуется, чтобы эти координаты изменялись слева направо и сверху вниз. Это означает , что экран дисплея связан с системой координат, начало которого находится в левом верхнем углу экрана.

Величены, характеризующие ширину и высоту экрана (в пикселях), -Xm иYm- в различных системах могут меняется от десятков до нескольких сотен и тысяч. Чем больше Xm иYm, тем выше качество изображения, так как каждая точка будет занимать меньшую область на экране. Количество пикселей по горизонтали и вертикали (Xm, Ym) называется разрешающей способностью.

Среда ГР.

Пользовательский интерфейс большинства графических редакторов организуется следующим образом. С левой стороны экране располагается набор пиктограмм (условных рисунков) с изображением инструментов, который можно пользоваться в процессе редактирования изображений. В нижней части экрана- палитра, из которой художник выбирает краски требуемого цвета. Оставшаяся часть экрана представляет собой пустой «холст» (рабочее поле). Над рабочим полем находится меню, позволяющее изменять режим работы ГР. На левом краю палитры выводится квадрат, окрашенный в фоновый цвет. В нем помещается еще два квадрата, верхний из которых окрашен в первый рабочий цвет, а нижний- во второй рабочий цвет. В левом нижнем углу экрана выводится калибровочная шкала, которая позволяет устанавливать ширину рабочего инструмента (кисти, резинки и т. д.).

Режим работы ГР.

Режим ГР определяет возможные действия художника, а также команды, которые художник может отдавать редактору в данном режиме.

режим работы с рисунком (рисование). В этом режиме на рабочем поле находится изображение инструмента. Художник наносит рисунок, редактирует его, манипулирует его фрагментами.

Режим выбора и настройки инструмента. Курсор- указатель находится в поле экрана с изображением инструментов (меню инструментов). Кроме того, с помощью меню можно настроить инструмент на определенный тип и ширину линии, орнамент закраски.

Режим выбора рабочих цветов. Курсор находится в поле экрана с изображением цветовой палитры. В этом режиме можно установить цвет фона, цвет рисунка. Некоторые ГР дают возможность пользователю изменять палитру.

Режим работы с внешними устройствами. В этом режиме можно выполнять команды записи рисунка на диск, считывания рисунка с диска, вывода рисунка на печать. Графические редакторы на профессиональных ПК могут работать со сканером, используя его для ввода изображения с репродукций.

Система команд ГР.

В каждом из перечисленных выше режимов художник может работать с определенным набором команд ГР. В различных графических редакторах на разных компьютерах системы команд могут существенно различаться. Во всех вариантах характерно использование принципа меню для выбора и инициализации команд.

В систему команд входят:

Команды выбора инструмента;

Команды настройки инструмента (ширина линий, шрифт букв);

Команды выбора цветов;

Команды масштабирования рисунка;

Команды ввода/вывода рисунка на внешние устройства.

Меню команд представляется в форме пиктограмм, а также в текстовой форме.


Билет 21

Вопрос 1

Электрон

ные таблицы. Назначение и основные функции.

Одной из самых продуктивных идей в компьютерных информационных технологиях стала идея электронной таблицы. Многие фирмы- разработчики программного обеспечения для ПК создали свои версии табличных процессоров- прикладных программ, предназначенных для работы с электронными таблицами. Из них наибольшую известность приобрели lotus1-2-3 фирмы lotus Development, Supercalc фирмы computer associates, Multiplan и excel фирмы Microsoft. Отечественные школьные компьютеры также оснащены упрощенными (учебными) версиями табличных процессоров.

Табличные процессоры (ТП)- удобный инструмент для экономистов, бухгалтеров, инженеров, научных работников- всех тех, кому приходится работать с большими массивами числовой информации. Эти программы позволяют создавать таблицы, которые (в отличие от реляционных без данных) является динамическими, т. е. содержат так называемые «вычисляемые поля», значения которых автоматически пересчитываются по заданным формулам при изменении значений исходных данных, содержащихся в других полях.

При работе с табличными процессорами создаются документы- электронные таблицы (ЭТ). Электронная таблица (документ) создается в памяти компьютера. В дальнейшем ее можно просматривать, изменять, записывать на магнитный диск для хранения, печати на принтере.

Среда ТП

Рабочим полем табличного процессора является экран дисплея, на котором электронная таблица представляется в виде матрицы. ЭТ, подобно шахматной доске, разделена на клетки, которые принято называть ячейками таблицы. Строки и столбцы имеют обозначения. Чаще всего строки имеют числовую нумерацию, а столбцы- буквенные (буквы латинского алфавита) обозначения. Как и на шахматной доске, каждая клетка имеет свое имя (адрес), состоящее из имени столбца и номера строки, например: А1, С13 и т.д.

Но если на шахматной доске всего 8*8=64 клетки, то в электронной таблице ячеек значительно больше. Например, у табличного процессора Excel таблица максимально содержит 256 столбцов и 16384 строки. Поскольку в латинском алфавите всего 26 букв, то начиная с 27-го столбца используется двухбуквенное обозначения, также в алфавитном порядке:

АА, АВ, ВZ, CA…

Последний, 256-й столбец имеет имя IV (не путайте с римской цифрой). Значит существуют ячейки с такими именами например; DL67, HZ10234 и т. п.

На экране дисплея видна не вся электронная таблица (документ), а только ее часть. Документ в полном объеме хранится в оперативной памяти, а экран можно считать окном, через которое пользователь имеет возможность просматривать его.

В ТП Excel реализована возможность работать одновременно с несколькими таблицами, расположенных на разных листах. Пользователь может «перелистывать» эти листы, как в книге.

При заполнении таблицы и при ее просмотре большую роль играет табличный курсор- прямоугольник, выделенный цветом. Табличный курсор всегда занимает клетку таблицы, которая называется текущей клеткой. Перемещая курсор по таблице, мы тем самым перемещаем «окно» по документу, хранящемуся в оперативной памяти, и делает видимым ту или иную его часть.

Важным элементом среды табличного процессора является меню команд. С его помощью управляют работой электронной таблицы. Меню может быть словесным (в Supercalc) или пиктографическим (в Excel).

Панель диалога обеспечивает взаимодействие пользователя с табличным процессором и может содержать следующие строки: строку состояния, строку запроса, строку ввода и строку помощи, расположенные в нижней части экрана.

Строка состояния предназначена для выдачи информации о текущей клетке. Строка запроса содержит возможные варианты ответа на запросы табличного процессора. Если пользователь не ведет диалог с табличным процессором, то строка запроса содержит некоторую дополнительную информацию: ширину текущего столбца, объем свободной памяти, размер таблицы с данными (активной таблицы).

Строка ввода предназначена для индикации данных, которые пользователь набирает перед вводом в клетки таблицы.

Строка помощи может содержать расшифровку текущей команды, индикатор состояния табличного процессора (не путать со строкой состояния). Можно выделить несколько основных таких состояний:

«ожидание»- ожидание набора данных или команд;

«меню»- ожидание выбора команды из меню команд;

«ввод»- ввод данных;

«редактирование»- редактирование данных в строе ввода.

Данные в электронной таблице.

Все данные таблицы размещаются в ячейках. Содержимым ячейки может быть текст, числовое значение или формула. Табличный процессор должен «знать», какого типа данное хранится в конкретной ячейке таблицы, для того чтобы правильно интерпретировать ее содержимое. Текст и числа рассматриваются как константы. Изменить их можно только путем редактирования соответствующих ячеек. Формулы же автоматически пересчитывают свои значения, как только хотя бы один их операнд был изменен. Вот примеры записи формул:

2.5*А1+В2*С3;

(В3-С1)/(В3+с1);

правила записи формул подобны правилам записи арифметических выражений в языках программирования. Только здесь в качестве идентификаторов переменных выступают имена ячеек таблицы. Кроме арифметических операций формулы могут содержать стандартные функции. У каждого ТП свой набор стандартных функций.

Режим работы и система команд ТП.

Можно выделить следующие режим работы табличного процессора:

формирование электронной таблицы;

управление вычислениями;

режим отображения формул;

графический режим;

работа электронной таблицы как базы данных.

Система команд тесно связана с режимами работы электронной таблицы. Как правило, команды реализуются через меню команд или через функциональные клавиши.

Рассмотрим подробнее режим работы электронных таблиц и команды, связанные с ними.

режим форматирования электронных таблиц предполагает запоминание и редактирование документа. Базовые команды формирования таблиц можно разбить на две группы;

команды, изменяющие содержимое клеток (очистить, редактировать, копировать);

команды, изменяющие структуру таблицы (удалить, вставить, переместить).

режим управления вычислениями. Все вычисления начинаются с клетки, расположенной на пересечении первой строки и первого столбца электронной таблицы. Вычисления проводятся в естественном порядке, т. е. если в очередной клетке находится формула, включающая адрес еще не вычисленной клетки, то вычисления по этой формуле откладывается до тех пор, пока значение в клетке, от которой зависит формула, не будет определено.

При каждом вводе нового данного в клетку документ пересчитывает заново- реализуется автоматический пересчет. В некоторых табличных процессорах существует возможность установки ручного пересчета, т. е. таблица пересчитывается заново только при подаче специальной команды.

режим отображения формулой задает индикацию содержимого клеток на экране. Обычно этот режим выключен и на экране отображается значения, вычисленные на основании содержимого клеток.

Графический режим дает возможность отображать числовую информацию в графическом виде, чаще всего в виде диаграмм. Команды графического режима можно разбить на две группы:

Команда описания диаграмм (задают данные, которые будут выведены в графическом виде, знают тип диаграмм и т. д.);

Команды вывода диаграмм.

работа в режиме без данных реализована в профессиональных ТП. Возможность искать и выбирать данные из таблицы позволяет использовать электронную таблицу в качестве несложной базы данных. При работе с базами данных приходится иметь дело с таким понятиями, как файл, записи, поле данных. В электронных таблицах файлом является сама таблица, записями- строки таблицы, полями- клетки таблицы.

Адресация.

Существует определенная аналогия между структурой электронной таблицы и структурой оперативной памяти ЭВМ. В обоих случаях используется принцип адресации для хранения и поиска информации. Разница состоит в том , что в ОЗУ наименьшей адресуемой единицей является байт, а в таблице- клетка (ячейка). Клетку таблицы можно рассматривать как переменную (т. е. А1, С5, G10- имена переменных).

Символические имена переменных являются в то же время их адресами в таблице. Существуют различные способы определения местоположение клетки: абсолютная адресация и относительная адресация. Абсолютная адресация устанавливает адрес клетки независимо от того из какой клетки таблицы ссылаются на данную клетку. Относительная адресация устанавливает адрес клетки в таблице в зависимости от местоположения формулы, в которой этот адрес используется в качестве операнда. По умолчанию в электронных таблицах действует относительная адресация.

Разница в способах адресации становится видна при переносе формул путем копирования или при других преобразованиях таблицы, приводящих к изменению местоположения формул. Относительные адреса в формулах модифицируются в соответствии с их новым местоположением. Абсолютные же адреса остаются неизменными. Для многих табличных процессоров в качестве признака «замораживания» адреса, т. е. превращения его из относительного в абсолютный, используется значок «$». Например, адреса ячейки G7 является относительным, а адрес, записанный в виде $G$7,является абсолютным («заморожен» как по строке, так и по столбцу).


Билет 22

Вопрос 1

Система управления базы данных (СУБД). Назначения и основные функции.

База данных (БД)- это хранящая во внешней памяти ЭВМ совокупность взаимосвязанных данных, организованных по определенным правилам, предусматривающим общие принципы описания, хранения и обработки данных.

Информация хранящаяся в БД, как правило, относится к какой-то определенной предметной области. Например:

БД книжного фонда библиотеки;

БД кадрового состава учреждения;

БД законодательных актов в области уголовного права;

БД современной рок- музыки и пр.

Базы данных бывают фактографическими и документальными.

В фактографических БД содержатся краткое сведения об описываемых объектах, представленные в строго определенном формате. Из приведенных выше примеров две первые БД скорее всего будут организованны как фотографические. В БД библиотеке о каждой книге хранятся библиографические сведенья: год издания, автор, название и пр. разумеется, текст книги в ней содержатся не будет. В БД отдела кадров учреждения хранится анкетные данные сотрудников: фамилия, имя, отчество, год и место рождения и пр.

Базы данных в третьем и четвертом примерах наверняка будут организованны как документальные. Первая из них будет включать в себя тексты законов: вторая- тексты и ноты песен, биографическую и творческую справочную информацию о композиторах, поэтах, исполнителях, звуковые записи и видео клипы. Следовательно, документальная БД содержит обширную информацию самого разного типа: текстовую, графическую, звуковую, мультимедийную.

Сама по себе база данных не может обслуживать запросы пользователя на поиск и обработку информации. БД-это только «информационный склад». Обслуживание пользователя осуществляет информационная система.

Информационная система (ИС)- это совокупность базы данных и всего комплекса аппаратно0 программного средств для ее хранения, изменения и поиска информации, для взаимодействия с пользователем. Примерами информационных систем являются системы продажи билетов на пассажирские поезда и самолеты. WWW- ‘это тоже пример глобальных информационных системы.

Устройства внешней памяти, на которых хранится БД, должно иметь высокую информационную емкость и малое время доступа к хранимой информации. Для хранения БД может использоваться как один компьютер, так и множество взаимосвязанных компьютеров.

Если различные части одной базы данных хранится на множестве компьютеров, объединенных между собой сетью, то такая БД называется распределенной базой данных. Очевидно, информацию в сети Интернет, объединенную паутиной WWW, можно рассматривать как распределенную базу данных. Распределение БД создается также и в локальных сетях.


Известны три основных типа организации данных и связей между ними: иерархический (в виде дерева), сетевой и реляционный.

В иерархической БД существует упорядоченность элементов в записи, один элемент считается главным, остальное- подчиненными. Поиск какого- либо элемента данных в такой системе может оказаться довольно трудоемким из-за обходимости последовательно проходить несколько иерархических уровней. Иерархическую БД образует например, каталог файлов, хранимых на диске, а дерево каталогов, доступное для просмотра в Norton commander,- наглядная демонстрация структуры такой БД и поиска в нем нужного элемента (при работе в операционной системе MS_DOS). Такой же БД является родовое генеалогическое дерево.

Сетевая БД отличается большей гибкостью, так как в нем существует возможность устанавливать дополнительно к вертикальным иерархическим связям горизонтальные связи. Это облегчает процесс поиска нужных элементов данных, так как уже не требует обязательного прохождения нескольких иерархических ступеней.

Наиболее распространенным способом организации данных является реляционный. Реляционными БД (от английского слова relation- «отношение») называется БД, этому подходу, такая таблица называется отношением. Каждая строка таблицы содержит информацию об одном отдельном объекте описываемой в БД системы (о конкретной книге, сотруднике учреждения и пр.), а каждый столбец- определенной характеристики (свойства, атрибуты) этих объектов. Например, атрибутами объектов могут быть автор книги, должность сотрудника, отдел, в котором он работает, и пр.

Строки такой таблицы называются записями, а столбцы- полями. Каждая запись должна отличатся от других значений главного ключа- определенного поля или совокупности полей, идентифицирующих запись. Для каждого поля определяется тип и формат. Чаще всего реляционная база данных – это множество таблиц, и поэтому на диске – это множество файлов. Различные таблицы связаны между собой через общие поля.

Программное обеспечение, позволяющее создать БД, обновлять хранимую в ней информацию, обеспечивающее удобный доступ к ней с целью просмотра и поиска, называется системой управления базой данных (СУБД). Система управления базами данных создает на экране компьютера определенную среду для работы пользователя (пользовательский интерфейс). Кроме того, СУБД имеет определенные режимы работы и систему команд. На основе СУБД создаются и функционируют ИС.

СУБД делятся по способу организации баз данных на сетевые, иерархические и реляционные, На современных персональных компьютерах наиболее распространение получили реляционные СУБД. Рассмотрим работу с ними.

Типичными режимами работы с базой данных являются:

Создание БД;

Редактирование БД;

Манипулирование БД;

Поиск в БД.

Для работы в каждом режиме существует своя система команд СУБД. Всякая работа пользователя с БД строится в форме алгоритма, составленного из этих команд. Такие алгоритмы могут выполняться в режиме прямого выполнения (отдается команда и сразу выполняется) и в режиме автоматического выполнения, т.е. в программном режиме.

В дальнейшем примеры команд будет приводить из СУБД dBASE, а также совместимых с ней FoxBase,”карат”, “ребус”, которые часто используются в школах на уроках информатики. Для интерфейса СУБД с пользователем могут применятся диалоговые оболочки (которые могут быть разными). Командный же язык везде приблизительно одинаков.
Система приглашает пользователя к диалогу выводом на экран символа «.» (точка), после которой он должен набрать на клавиатуре команду. Ввод параметров команды, как правило, происходит в диалоге. СУБД запрашивает параметры, пользователь вводит их с клавиатуры.

Режим работы с БД.

режим создания БД. Работа в этом режиме происходит в такой последовательности:

отдается команда создать БД (.create).

на запрос системы пользователь сообщает имя базы данных (file name: primer).

Запрашивается общее количество полей (столбцов) записи; затем по соответствующему запросу вводится характеристики полей БД, к которым относятся:

имя поля.

Тип поля.

Ширина поля (количество символов).

Формат числовых данных.

После определения структуры записей (строк таблицы) происходит ввод информации в БД. Ввод также происходит в диалоге- значение каждого поля, каждой записи запрашивается отдельно. Для каждого поля таблицы должен быть определенный тип данных (символьный, числовой, логический).

режим редактирования БД. Под редактированием понимается внесение любых изменений в уже созданную базу данных. Типичные операции редактирования:

добавление новых записей в базу (в конце или вставка внутрь) (APPEND, INSERT);

удаление записи из базы (DELETE);

редактирование значений полей записи (edit, change, browse).

манипулирование БД-это некоторые действия, выполняемые с БД в целом. К этой группе можно отнести следующие команды:

просмотр всей БД на экране (list);

копирование файла БД (copy);

сортировка записей БД по значениям некоторого поля и создание файла с отсортированными записями (sort);

активизация файла БД для обработки всех видов (USE) и др.

режим поиска БД -это выбор из базы данных записей, удовлетворяющих заданным условиям поиска. Поля, по значению которых осуществляется поиск, называется ключом поиска. Условие поиска представляет собой логическое выражение, например:

должность= «инженер»;

отдел 310.

Слева от знака сравнения пишутся имена полей, справа- значения, с которыми производится сравнение. Подобные выражения отражают условия поиска по одному поисковому ключу. Если требуется осуществить поиск по нескольким ключам или на значение одного ключа накладывается несколько условий, то условие поиска будет представлять собой сложное логическое выражение:

(должность= «инженер») или (должность= «программист»);

(отдел= 310)и (не (должность= «лаборант»)).

В сложных логических выражениях употребляется логические операции: И- логическое умножение (конъюнкция); ИЛИ- логическое сложение (дизъюнкция); не- отрицание (в Dbase, соответственно: AND, OR, NOT).

Результатом поиска в БД может быть выделение в таблице записей, удовлетворяющих условно поиска. В dBASE такое действие выполняется по команде (LOCATE) «условие поиска». Указатель устанавливается на первую запись, удовлетворяющую условию поиска. А затем с помощью специальной команды (CONTINUE) перемещается к следующей такой записи. Результатом поиска может быть создание отдельной таблицы, в которой собраны все строки, удовлетворяющие условию.


Билет 22

Вопрос 2

Компьютерные вирусы. Методы распространения профилактики заражения.


Компьютерный вирус - это специально написанная небольшая по размерам программа, которая может "приписывать" себя к другим программам (т.е. "заражать" их),а также выполнять различные нежелательные действия на компьютере. Программа, внутри которой находится вирус, называется "зараженной". Когда такая программа начинает работу, то сначала управление получает вирус. Вирус находит и "заражает" другие программы, а также выполняет какие-нибудь вредные действия (например, портит файлы или таблицу размещения файлов на диске, "засоряет" оперативную память и т.д.). Для маскировки вируса действия по заражению других программ и нанесению вреда могут выполняться не всегда, а, скажем, при выполнении определенных условий. После того как вирус выполнит нужные ему действия, он передает управление той программе, в которой он находится, и она работает также, как обычно. Тем самым внешне работа зараженной программы выглядит так же, как и незараженной.

Многие разновидности вирусов устроены так, что при запуске зараженной программы вирус остается резидентно, т.е. до перезагрузки DOS, в памяти компьютера и время от времени заражает программы и выполняет вредные действия на компьютере.

Компьютерный вирус может испортить, т.е. изменить ненадлежащим образом, любой файл на имеющих в компьютере дисках. Но некоторые виды файлов вирус может "заразить". Это означает, что вирус может "внедриться" в эти файлы, т.е. изменить их так, что они будут содержать вирус, который при некоторых обстоятельствах может начать свою работу.

Следует заметить, что тексты программ и документов, информационные файлы без данных, таблицы табличных процессоров и другие аналогичные файлы не могут быть заражены вирусом, он может их только испортить.


------- ПРОЯВЛЕНИЕ НАЛИЧИЯ ВИРУСА В РАБОТЕ НА ПЭВМ -------

Все действия вируса  выполняться достаточно быстро и без выдачи каких-либо сообщений, поэтому пользователю очень трудно заметить, что в компьютере происходит что-то необычное.

Пока на компьютере заражено относительно мало программ, наличие вируса может быть практически незаметно. Однако по прошествии некоторого времени на компьютере начинает твориться что-то странное, например:

* некоторые программы перестают работать или начинают работать неправильно;

* на экран выводятся посторонние сообщения, символы и т.д.;

* работа на компьютере существенно замедляется;

* некоторые файлы оказываются испорченными и т.д.

К этому моменту, как правило, уже достаточно много (или даже большинство) программ являются зараженными вирусом, а некоторые файлы и диски - испорченными. Более того, зараженные программы с одного компьютера могли быть перенесены с помощью дискет или по локальной сети на другие компьютеры.

Некоторые виды вирусов ведут себя еще более коварно. Они вначале незаметно заражают большое число программ или дисков, а потом причиняют очень серьезные повреждения, например формируют весь жесткий диск на компьютере. А бывают вирусы, которые стараются вести себя как можно более незаметно, но понемногу и постепенно портят данные на жестком диске компьютера.

Таким образом, если не предпринимать мер по защите от вируса, то последствия заражения компьютера могут быть очень серьезными.


-------- РАЗНОВИДНОСТИ КОМПЬЮТЕРНЫХ ВИРУСОВ --------

Каждая конкретная разновидность вируса может заражать только один или два типа файлов. Чаще всего встречаются вирусы, заражающие исполнимые файлы. Некоторые вирусы заражают и файлы, и загрузочные области дисков. Вирусы, заражающие драйверы устройств, встречаются крайне редко, обычно такие вирусы умеют заражать и исполнимые файлы.

В последнее время получили распространение вирусы нового типа - вирусы, имеющие файловую систему на диске. Эти вирусы обычно называются DIR. Такие вирусы прячут свое тело в некоторый участок диска (обычно - в последний кластер диска) и помечают его в таблице размещения файлов (FAT) как конец файла.

Чтобы предотвратить свое обнаружение, некоторые вирусы применяют довольно хитрые приемы маскировки. Я расскажу о двух из них: "невидимых" и самомодифицирующихся вирусах.

"НЕВИДИМЫЕ" вирусы. Многие резидентные вирусы (и файловые, и загрузочные) предотвращают свое обнаружение тем, что перехватывают обращения DOS (и тем самым прикладных программ) к зараженным файлам и областям диска и выдают их в исходном (незараженном) виде. Разумеется, этот эффект наблюдается только на зараженном компьютере - на "чистом" компьютере изменения в файлах и загрузочных областях диска можно легко обнаружить.

САМОМОДИФИЦИРУЮЩИЕСЯ вирусы. Другой способ, применяемый вирусами для того, чтобы укрыться от обнаружения, - модификация своего тела. Многие вирусы хранят большую часть своего тела в закодированном виде, чтобы с помощью дизассемблеров нельзя было разобраться в механизме их работы. Самомодифицирующиеся вирусы используют этот прием и часто меняют параметры этой кодировки, а кроме того, изменяют и свою стартовую часть, которая служит для раскодировки остальных команд вируса. Таким образом, в теле подобного вируса не имеется ни одной постоянной цепочки байтов, по которой можно было бы идентифицировать вирус. Это, естествен-

но, затрудняет нахождение таких вирусов программами-детекторами.


-------- МЕТОДЫ ЗАЩИТЫ ОТ КОМПЬЮТЕРНЫХ ВИРУСОВ --------

Каким бы не был вирус, пользователю необходимо знать основные методы защиты

от компьютерных вирусов. Для защиты от вирусов можно использовать:

* общие средства защиты информации, которые полезны также и как страховка от физической порчи дисков, неправильно работающих программ или ошибочных действий пользователя;

* профилактические меры, позволяющие уменьшить вероятность заражения вирусом;

* специализированные программы для защиты от вирусов.

Общие средства защиты информации полезны не только для защиты от вирусов. Имеются две основные разновидности этих средств:

* копирование информации - создание копий файлов и системных областей дисков;

* разграничение доступа предотвращает несанкционированное использован информации, в частности, защиту от изменений программ и данных вирусами, неправильно работающими программами и ошибочными действиями пользователей. Несмотря на то, что общие средства защиты информации очень важны для защиты от вирусов, все же их недостаточно. Необходимо и применение специализированных программ для защиты от вирусов. Эти программы можно разделить на несколько видов: детекторы, доктора (фаги), ревизоры, доктора-ревизоры, фильтры и вакцины(иммунизаторы).

ПРОГРАММЫ-ДЕТЕКТОРЫ позволяют обнаруживать файлы, зараженные одним из нескольких известных вирусов. Эти программы проверяют, имеется ли в файлах на указанном пользователем диске специфическая для данного вируса комбинация байтов. При ее обнаружении в каком-либо файле на экран выводится соответствующее сообщение. Многие детекторы имеют режимы лечения или уничтожения зараженных файлов. Следует подчеркнуть, что программы-детекторы могут обнаруживать только те вирусы, которые ей "известны". Программа Scan фирмы McAfee Associates и Aidstest Д.Н .Лозинского позволяют обнаруживать около 1000 вирусов, но всего их более пяти тысяч! Некоторые программы-детекторы, например Norton AntiVirus или AVSP фирмы "Диалог-МГУ", могут настраивать на новые типы вирусов, им необходимо лишь указать комбинации байтов, присущие этим вирусам. Тем не менее невозможно разработать такую программу, которая могла бы обнаруживать любой заранее неизвестный вирус.

Таким образом, из того, что программа не опознается детекторами как зараженная, не следует, что она здорова - в ней могут сидеть какой-нибудь новый вирус или слегка модифицированная версия старого вируса, неизвестные программам-детекторам.

Многие программы-детекторы (в том числе и Aidstest) не умеют обнаруживать заражение "невидимыми" вирусами, если такой вирус активен в памяти компьютера. Дело в том, что для чтения диска они используют функции DOS, а они перехватываются вирусом, который говорит, что все хорошо. Правда, Aidstest и другие детекторы

пытаются выявить вирус путем просмотра оперативной памяти, но против некоторых "хитрых" вирусов это не помогает. Так что надежный диагноз программы-детекторы дают только при загрузке DOS с "чистой", защищенной от записи дискеты, при этом копия программы-детектора также должна быть запущена с этой дискеты.

Некоторые детекторы, скажем, ADinf фирмы "Диалог-Наука", умеют ловить "невидимые" вирусы, даже когда они активны. Для этого они читают диск, не используя

вызовы DOS. Правда, этот метод работает не на всех дисководах.

Большинство программ-детекторов имеют функцию "доктора", т.е. они пытаются вернуть зараженные файлы или области диска в их исходное состояние. Те файлы, которые не удалось восстановить, как правило, делаются неработоспособными или удаляются.

Большинство программ-докторов умеют "лечить" только от некоторого фиксированного набора вирусов, поэтому они быстро устаревают. Но некоторые программы могут

обучаться не только способам обнаружения, но и способам лечения новых вирусов.

К таким программам относится AVSP фирмы "Диалог-МГУ".

ПРОГРАММЫ-РЕВИЗОРЫ имеют две стадии работы. Сначала они запоминают сведения о состоянии программ и системных областей дисков (загрузочного сектора и сектора с таблицей разбиения жесткого диска). Предполагается, что в этот момент программы и системные области дисков не заражены. После этого с помощью программы-ревизора можно в любой момент сравнить состояние программ и системных областей дисков с исходным. О выявленных несоответствиях сообщается пользователю.

Чтобы проверка состояния программ и дисков проходила при каждой загрузке операционной системы, необходимо включить команду запуска программы-ревизора в командный файл AUTOEXEC.BAT. Это позволяет обнаружить заражение компьютерным вирусом, когда он еще не успел нанести большого вреда. Более того, та же программа--ревизор сможет найти поврежденные вирусом файлы. Многие программы-ревизоры являются довольно "интеллектуальными" - они могут отличать изменения в файлах, вызванные, например, переходом к новой версии программы, от изменений, вносимых вирусом, и не поднимают ложной тревоги. Дело в том, что вирусы обычно изменяют файлы весьма специфическим образом и производят одинаковые изменения в разных программных файлах. Понятно, что в нормальной ситуации такие изменения практически никогда не встречаются, поэтому программа-ревизор, зафиксировав факт таких изменений, может с уверенностью сообщить, что они вызваны именно вирусом.

Следует заметить, что многие программы-ревизоры не умеют обнаруживать заражение "невидимыми" вирусами, если такой вирус активен в памяти компьютера. Но некоторые программы-ревизоры, например ADinf фирмы "Диалог-Наука", все же умеют делать это, не используя вызовы DOS для чтения диска (правда, они работают не на всех дисководах).Другие программы часто используют различные полумеры – пытаются обнаружить вирус в оперативной памяти, требуют вызовы из первой строки файла

AUTOEXEC.BAT, надеясь работать на "чистом" компьютере, и т.д. Увы против некоторых "хитрых" вирусов все это бесполезно.

Для проверки того, не изменился ли файл, некоторые программы-ревизоры проверяют длину файла. Но эта проверка недостаточна - некоторые вирусы не изменяют длину зараженных файлов. Более надежная проверка - прочесть весь файл и вычислить его контрольную сумму. Изменить файл так, чтобы его контрольная сумма осталась прежней, практически невозможно.

В последнее время появились очень полезные гибриды ревизоров и докторов, т.е.


ДОКТОРА-РЕВИЗОРЫ,- программы, которые не только обнаруживают изменения в файлах и системных областях дисков, но и могут в случае изменений автоматически вернуть их в исходное состояние. Такие программы могут быть гораздо более универсальными, чем программы-доктора, поскольку при лечении они используют заранее сохраненную информацию о состоянии файлов и областей дисков. Это позволяет им вылечивать файлы даже от тех вирусов, которые не были созданы на момент написания программы.

Но они могут лечить не от всех вирусов, а только от тех, которые используют

"стандартные", известные на момент написания программы, механизмы заражения файлов.

Существуют также ПРОГРАММЫ-ФИЛЬТРЫ, которые располагаются резидентно в оперативной памяти компьютера и перехватывают те обращения к операционной системе, которые используются вирусами для размножения и нанесения вреда, и сообщают о них пользователя. Пользователь может разрешить или запретить выполнение соответствующей операции.

Некоторые программы-фильтры не "ловят" подозрительные действия, а проверяют вызываемые на выполнение программы на наличие вирусов. Это вызывает замедление работы компьютера.

Однако преимущества использования программ-фильтров весьма значительны – они позволяют обнаружить многие вирусы на самой ранней стадии, когда вирус еще не успел размножиться и что-либо испортить. Тем самым можно свести убытки от вируса к минимуму.

ПРОГРАММЫ-ВАКЦИНЫ, или ИММУНИЗАТОРЫ, модифицируют программы и диски таким образом, что это не отражается на работе программ, но тот вирус, от которого производится вакцинация, считает эти программы или диски уже зараженными. Эти программы крайне неэффективны.

Ни один тип антивирусных программ по отдельности не дает полной защиты от вирусов. Лучшей стратегией защиты от вирусов является многоуровневая, "эшелонированная" оборона. Опишу структуру этой обороны.

Средствам разведки в "обороне" от вирусов соответствуют программы-детекторы, позволяющие проверять вновь полученное программное обеспечение на наличие вирусов. На переднем крае обороны находятся программы-фильтры. Эти программы могут первыми сообщить о работе вируса и предотвратить заражение программ и дисков. Второй эшелон обороны составляют программы-ревизоры, программы-доктора и доктора-ревизоры. Самый глубокий эшелон обороны - это средства разграничения доступа. Они не позволяют вирусам и неверно работающим программам, даже если они проникли в компьютер, испортить важные данные. В "стратегическом резерве" находятся архивные копии информации. Это позволяет восстановить информацию при её повреждении. Это неформальное описание позволяет лучше понять методику применения антивирусных средств.


---------- ДЕЙСТВИЯ ПРИ ЗАРАЖЕНИИ ВИРУСОМ ----------

При заражении компьютера вирусом (или при подозрении на это) важно соблюдать 4-е правила:

1) Прежде всего не надо торопиться и принимать опрометчивых решений.

Непродуманные действия могут привести не только к потери части файлов, но к повторному заражению компьютера.

2) Надо немедленно выключить компьютер, чтобы вирус не продолжал

своих разрушительных действий.

3) Все действия по обнаружению вида заражения и лечению компьютера

следует выполнять при загрузке компьютера с защищенной от записи дискеты с ОС(обязательное правило).

4) Если Вы не обладаете достаточными знаниями и опытом для лечения

компьютера, попросите помочь более опытных коллег.


Билет 23

Вопрос 1

Услуги компьютерных сетей.

Компьютерная (электронная) сеть –это система обмена информацией между различными компьютерами.

Наиболее популярным видом услуг, которые представляют своим абонентам компьютерные сети, являются электронная почта (e-mail).

Каждый абонент электронной почты при регистрации получает свои собственный «почтовый ящик»- некоторый объем памяти на сервере, в который попадают все адресованные ему сообщения. Имена почтовых ящиков и сведения об их владельцах доступны всем абонентам сети. Войдя в сеть можно послать сообщение по любому адресу, и это сообщение попадает в соответствующий почтовый ящик. Для того чтобы получить поступившее письмо, необходимо сообщить системе имя почтового ящика и пароль, дающий право на получение информации. Каждый владелец почтового ящика сам устанавливает пароль, закрывая тем самым свой почтовый ящик от посторонних.

Используя различные протоколы, можно положить в почтовый ящик своего корреспондента как текстовые, так и двоичные файлы. С помощью двоичных файлов передают любые виды данных: программы для ЭВМ в машинных кодах, звук, изображение, текстовые файлы с любой кодировки символов. Единственное требование состоит в том, чтобы адресат сумел правильно проинтерпретировать (понять) переданное ему сообщение.


Программное обеспечение электронной почты- коммуникационная программа (КП). Используемое в настоящее время ПО такого рода достаточно разнообразно.

Среда КП.

Рабочим полем КП является экран дисплея, на котором располагаются меню, строка состояния, рабочие окна. В рабочие окна вызываются списки писем и сами письма (сообщения).

Важнейшем элементом среды КП является почтовый ящик- область внешней памяти сервера, куда поступают письма. Во внешней памяти терминала для долговременного хранения писем используется почтовый архив, а для адресов постоянных абонентов- адресный справочник.

Электронное письмо обычно состоит из краткого сообщения (текста) и пересылаемых файлов, в которых может содержаться самая разная информация: тексты, программные продукты, закодированные графические изображения и т. д.

Для хранения этих файлов создаются специальные каталоги почты.


Режим работы КП.

установка параметров конфигурации. Этот режим чаще всего используется в начальный момент подключения абонента к электронной почте. При этом создаются почтовый ящик, почтовый архив, адресный справочник, каталоги почты. Кроме того, устанавливаются номера телефона и параметры модема, к которым подключается терминал. В процессе текущей работы в этом режиме можно управлять планированием времени обмена почтой и устанавливать текущего активного пользователя (если к данному терминалу имеют доступ несколько абонентов).

Просмотр почтового ящика (списка писем). Во время просмотра можно отсортировать полученные письма (например, по дате отправления, по имени отправителя и т. д.) и выбрать письмо для просмотра.

Просмотр письма. В этом режиме помимо визуального просмотра письма можно выполнить следующие действия над письмами:

Удаление.

Сохранение в почтовом архиве.

Переписывание в файл.

Пересылка другому адресату.

Печать на принтере.

подготовка/редактирование писем. Письмо подготавливается в специальном рабочем поле- бланке письма, который содержит адресную часть, место для краткого описания (сути) письма, место для указания имен файлов, отправляемых с этим письмом. Для работы на этом бланке используется встроенный текстовый редактор. Заполнение адресной части можно осуществлять выбором из списка адресов. Имена отправляемых файлов можно выбрать из каталога почты.

Отправление электронной корреспонденции. В этом режиме подготовленное письмо отправляется адресату, при этом можно использовать дополнительные услуги, например уведомление о получении.

Помимо электронной почты к услугам компьютерных сетей относятся следующие:

База данных. Доступ к базам данных- типичный вид услуг, предоставляемых абонентам компьютерных сетей. Подключившись, к сети через телефонную линию и задав сетевой адрес нужной ему базы данных, абонент подключается к ней и в режиме диалога может получить требуемую ему информацию. Стоимость информационных услуг обычно прямо пропорциональна времени работы с системой.

Электронные доски объявлений—BBS (Bulletin Board System).

Электронная доска объявлений по своему замыслу аналогия обычной доске объявлений, которая висит на стене в каждой школе.

При использовании базы данных любой абонент может прочитать всю хранящуюся там информацию, но не имеет права ее изменять. Пользуясь электронной почтой, абонент может записать информацию в любой почтовый ящик, но прочитать и изменить данные он может только в своем собственном. Электронная доска объявлений позволяет каждому записать туда любую информацию, представляющую интерес для абонентов системы, и прочитать сообщения, помещенные туда другими абонентами. Такой режим работы дает возможность использовать электронные доски объявлений для проведения компьютерных конференций- телеконференций. Особую роль в проведении телеконференции играет ее ведущий. Ведущий получает у оператора системы разрешение на проведение конференции, открывает ее, приглашает участников, организует и поддерживает их работу. Ведущий может закрыть конференцию, когда необходимость в ней отпадает. В отличие от остальных абонентов системы ведущий имеет право удалять сообщения, помещенные на доску объявлений. Передача сообщения для телеконференции идет в обычном режиме электронной почты, только в этом случае адресатом является конкретная тема в телеконференции.

Широкое развитие получает WWW (World Wide Web- всемирная паутина), позволяющая совершать все перечисленные операции в сети с помощью полноэкранного графического интерфейса. World Wide Web –это собрание информационных страниц. Каждая страница может быть комбинацией текста, рисунков, анимации и пр. Web- страницы содержат так называемые гиперсвязи. Каждая гиперсвязь соотносится с другой Web-страницей, и если щелкнуть на некоторой странице мышью, то на экране будет выведена связанная с ней страница. В этой странице может быть, в свою очередь, еще несколько таких связей (ссылок) на другие страницы. Эта система связанных между собой документов называется гипертекстом. С помощью WWW можно просматривать сообщения о последних новостях (электронное издание журнала «PC World» выходит на месяц раньше, чем соответствующее печатное издание), делать заказы на приобретение различных товаров по каталогу и т.д.


Билет 24 Вопрос 1

гипертекст. Технология WWW/

Гипертекст- это способ организации текстовой информации, внутри которой установлены смысловые связи между ее различными фрагментами.

Такие связи называются гиперсвязями чаше всего по принципу гипертекста организованны компьютерные справочники, энциклопедии, учебники. Токую книгу можно читать не только в обычном порядке, листая страницы на экране, но и перемещать по смысловым связям в произвольном порядке. Например, при изучении на уроке физике Ньютона с помощью компьютерного учебника, ученик прочитал определение закона «сила равна произведению массы на ускорение». Ему захотелось вспомнить определения массы. Указав в тексте на слово масса (связанные понятия обычно выделяются или подчеркиваются, а указать на них удобно с помощью мыши, он быстро перейдет к разделу учебника, где рассказывается о массе тел . прочитав определения, масса мера инертности тела. После такой экскурсии в глубь материала ученик может вернутся в исходную точку нажатием одной клавиши, так как система помнит весь путь обучения.

Самой новой и самой интересной услугой, представляемой пользователям internet, с недавних пор стала возможность работать с информационной системой WWW. Это словосочетание можно перевести как «всемирная паутина». Именно работа с WWW имеется в виду.

Очень трудно дать определение WWW. Эту систему можно сравнить с огромной энциклопедией, страниц которой разбросаны по компьютерным сервисам, объединенных сетью internet. Чтобы получить нужную информацию, пользоатель должен добраться до соответствующей страницы энциклопедии. Видимо, имея в виду такую аналогию, создатели WWW вели понятие Web-страницы.

Web-страница это основная информационная единица WWW. Она содержит отдельный документ, хранящихся на Web-сервере. Страница имеет свое имя (подобно номеру страницы в энциклопедии), по которому к ней можно обратится.

Информация на Web-странице может быть самой разной, текст, рисунок, фотография, мультимедиа. На Web-страницах помещают рекламу, справочную информацию, научные статьи, последние новости, иллюстрированные издания, художественные каталоги, прогноз погоды и многое , многое другое. Проще сказать- на Web-страницах есть все.

Один Web-сервер содержит множество страниц (можно сказать, что это один том многотомной энциклопедии под названием WWW). У каждого такого сервера есть главная страница, которая называется домашней (Home page). Это своеобразный титульный лист, начиная с которого можно просматривать документы хранящиеся на сервере. Обычно домашняя страница сервера содержит оглавление- названия разделов. Чтобы обратится к нужному разделу, достаточно под весть указатель на экране к названию раздела и щелкнуть клавишей мыши.

На одну и туже страницу можно выйти разными путями. Аналогия страницам книги здесь уже не работает. В книге страницы имеют определенную последовательность. Web-страницы такой последовательности не имеют . переход от одной страницы к другой происходит по гиперсвязям, образующим сеть, которая напоминает паутину. Отсюда происходит название системы.

Перемещаться пользователю по «паутине» помогает специальное программное обеспечение, которое называется Web-боузером, от английского browse-осматривать, изучать. С помощью броузера нужную информацию можно найти разными способами. Система WWWочень быстро развивается. Уже сейчас все ее ресурсы плохо поддаются обзору. Выпускаются толстые справочники, каталоги, которые устаревают быстрее, чем телефонные книги. Поэтому одновременно с увеличением объема информации совершенствуется система поиска в WWW.


Билет 25

Вопрос 1

Информатизация общества. Основные этапы развития, вычислительной технике.

Информационные революции. Информатизация общества.

Подходя к анализу жизни общества на различных ступеньках его развития с точки зрения выяснение того, что определяло в тот или иной период его выживания и прогрессивное развитие, можно заметить, что вплоть до 17 в деятельность общества в целом и каждого человека в отдельности была направлена на овладение веществом, то есть познание свойств вещества и изготовление сначала примитивных, а потом все более сложных орудий труда, вплоть до механизмов в машин, позволяющие изготовлять потребительские ценности.

Затем в процессе становления индустриального общества на первый план вышла проблема овладения энергией- с начало тепловой, затем электрический, наконец, в20 в , атомной. Овладение энергией позволило освоить массовое производство потребительских ценностей и, как следствие, повысить уровень жизни людей и изменить характер их труда.

С другой стороны, человечество стремилось познать тайны мировоззрения, составляя его модели, выделяя общие закономерности, пытаясь увидеть некоторое единство в разнообразии материальных объектов. И одним из первых обобщений абстрактных понятий науки становится вещество. Эта идея развивалась в от философии древней Греции до современной теории квантового вещества. Казалось, что все в мире можно объяснить, описав как совокупность взаимодействующих материальных частиц. Следующим обобщенным понятием стало понятие энергия. Его появление было связано с развитием техники, созданием двигателей, технических преобразователей энергии. Физические, химические, биологические процессы стали рассматриваться с позиции передачи и преобразования энергии. Желая исследовать все более сложные объекты в технике, биологии, обществе, наука встала перед фактом невозможности детального описания их поведение на языке материально-энергетических моделей.

В то же время людям была свойственна потребность выразить и запомнить информацию об окружающем их мире так появилась устная речь, письменность, книгопечатание, живопись, фотография, радио, телевидение.. в истории развития цивилизации произошло несколько информационных революций- преобразование общественных отношений из-за кардинальных изменение в сфере обработки информации, информационных технологий. Следствием подобных преобразований являлось приобретение человеческим обществом ново8го качества.

Первая революция связана с изобретением письменности. Появилась возможность распространения знаний и сохранения их для передачи последующим поколениям.

Вторая революция (конец 16 в.) вызвана изобретением книгопечатания, которое радикальным образом изменило общество, культуру.

Третья революция (конец 20 в) обусловлена изобретением электричества, благодаря которому появились телеграф, телефон, радио, позволяющие оперативно передавать информацию.

Четвертая революция (70-е годы 20в) связана с изобретением персонального компьютера.

Разработки создание компьютеров, как электронных автоматических устройств для работы с информацией, были объективно предопределены. Начиная с последней трети 20в. стали говорить об информационном взрыве, называя так бурный рост объемов и потоков информации. Он произошел на фоне традиционных методов обработки информации, фактически с помощью бумаги и ручки, что привело к информационному кризису. Возникло противоречие между быстро возрастающими объемами и потоками информации, потребностями общества в ее обработке для повышения уровня производства и жизни и ограниченными возможностями человека, использующего при работе с информацией традиционные технологии. Это противоречие стало негативно сказываться на темпах экономического развития и научно-технического прогресса. Начинался постепенный переход к информационному обществу, в котором на основе овладения информацией о самых различных процессах и явлениях можно эффективно и оптимально строить любую деятельность. Возможно, что в информационном обществе повышается качество не только потребления, но и производства. Человек, использующий новее информационные технологии, работает в лучших условиях, труд становится творческим, интеллектуальным. Важное место в этом процессе заняла новая научная дисциплина- кибернетика- наука об управлении связи в живом организме, машине, обществе, наука, центральным понятием которой является информация. Кибернетика породила новый системно-информационный взгляд на природу.

Таким образом, вещество, энергия, информация-это три стороны с точки зрения которых наука сумела посмотреть на бесконечно сложный и разнообразный мир. И степень его познания, практического овладения знания о веществе, энергии, информации не в последнюю очередь определили достигнутый уровень развития и дальнейшие перспективы научно-технического и экономического прогресса человеческого общества.

В качестве средства для хранения, переработки передачи информации научно-технический прогресс предложил обществу компьютер (электронно-вычислительную машину-ЭВМ). А в качестве меры развитости информационного общества можно взять три критерия: наличие компьютеров, существование развитого рынка программного обеспечения и функционирование компьютерных информационных сетей. Причем важно не количество компьютеров само по себе, необходимо, чтобы они были надежными, недорогими, с богатыми аппаратными и программными возможностями. Именно а таким компьютерам наиболее приблизились последние модели четвертого поколения.

Развитие вычислительной техники. Но вычислительная техника не сразу достигла такого уровня. В ее развитии отмечают предысторию и четыре поколения ЭВМ. Предыстория начинается в глубокой древности с различных приспособлений для счета (абак, счеты), а первая счетная машина появилась лишь в 1642г. Ее изобрел французский математик Паскаль. Построена на основе зубчатых колес, она могла суммировать десятичные числа. Все четыре арифметических действия выполняла машина, созданная в 1673г. немецким математиком Лейбницем. Она стала прототипом арифмометров, использовавшихся с 1820г. до 60годов 20 века. Впервые идея программного управляемой счетной машины, имеющие арифметическое устройство, устройства управления, ввода и печати (хотя и использующей десятичную систему счисления), была выдвинута в 1822. Английским математиком Бэббиджем. Проект опережал технические возможности своего времени и не был реализован. Лишь в 40-х годах 20 века удалось создать программируемую счетную машину, причем на основе электромеханических реле, которые могут пребывать в одном из устойчивых состояний, «включено» и «выключено». Это технически проще, чем пытаться реализовать десять различных состояний, опирающихся на обработку информации на основе десятичной, а не двоичной базой которых были электронные лампы. С каждым новым поколением ЭВМ увеличивались быстродействие и надежность их работы при уменьшении стоимости и размеров, совершенствовались устройства ввода и вывода информации. В соответствии с трактовкой компьютера как технической модели информационной функции человека-устройства ввода приближаются к естественному для человека восприятию информации (зрительному, звуковому) и, следовательно операция по ее вводу в компьютер становится все более удобным для человека.

Современный компьютер-это универсальное, многофункциональное, электронное автоматическое для работы с информацией. Компьютеры в современном обществе взяли на себя значительную часть работ, связанных с информацией. По историческим меркам компьютерные технологии обработки информации еще очень молоды и находятся в самом начале своего развития. Еще ни одного потоков информации, не вовлеченных в сферу действия компьютеров. Компьютерные технологии сегодня преобразуют или вытесняют старые, докомпьютерные технологии обработки информации. Текущей этап завершится построением в индустриально развитых странах глобальных всемирных сетей для хранения и обмена информацией, доступно каждой организации и каждому члену общества. Надо только помнить, что компьютерам следует поручать то, что они могут делать лучше человека, и не употреблять во вред человеку, обществу.


Билет 25

Вопрос 2

Передача информации. Организация и структура телекоммуникационных сетей.

Телекоммуникационное (от греч. Tele- «вдаль, далеко» и лат. Communicato- “связь”)- это обмен информацией на расстоянии. Радиопередатчик, телефон, телетайп, факсимильный аппарат, телекс и телеграф- наиболее распространенные и привычные нам сегодня примеры технических средств телекоммуникации.

В последнее десятилетие к ним прибавилось еще одно средство- это компьютерные коммуникации, которые получают сейчас все более широкое распространение. Они обещают потеснить факсимильную и телетайпную связь подобно тому как последние вытесняют сегодня телеграф.


Компьютерная (электронная) сеть- это система обмена информацией между различными компьютерами. Сеть бывает локальная, отраслевые, региональные, глобальные. Принципы функционирования различных электронных сетей примерно одинаковы. Сеть строится из связанных между собой компьютеров. В большинстве случаев сеть строится на основе нескольких мощных компьютеров, называемых серверами. Серверы могут подключиться друг к другу по обычным телефонным каналам, а также по выделенным линиям и посредством цифровой и спутниковой связи. К средствам глобальной сети обычно подключены серверы и соответственно сети второго порядка (региональные), третьего порядка (отраслевые или корпоративные), четвертого порядка (локальные), а к ним- пользователи отдельных компьютеров- абоненты сети. Заметим, что сети не всех промежуточных уровней (например, отраслевые) обязательны.

В компьютерных сетях каждый абонент может использовать различные марки компьютеров, типы модемов, линии связи, коммуникационные программы. Чтобы все это оборудование работало согласованно, работа сети подключается специальным техническим соглашениям, которые называются протоколами.

Протоколы- это стандарты, определяющие формы представлений и способы пересылки сообщений, процедуры их интерпретации, правила совместной работы различного оборудования в сетях.

Международная организация по стандартизации (ISO) подготовила и ввела в действие многоуровневую (иерархическую)структуру протоколов.

Работу сервера обеспечивает специальная сетевая программа, которая ведет диалог с пользователями и поддерживается все действующие в сети протоколы связи. Сегодня в мире используется десятки сетевых программ, имеющих различный пользовательский интерфейс. Поэтому в каждой сети надо осваивать принятые здесь технические правила работы, соглашается о способах адресации корреспонденции и т. д.

Абоненту телекоммуникационной сети нужен компьютер с соответствующей программой (терминал), модем и линия связи, позволяющая компьютеру соединяются с другой компьютерной системой.

Терминал. Обычно это персональная ЭВМ, используемая для получения и отправки корреспонденции.

Модем. Для того чтобы соединить персональный компьютер с телефонной сетью, необходимо специальное устройство, согласующее их работу. Таким устройством является модем (сокращение от слов «модулятор/демодулятор»). Модем переводит двоичные сигналы, используемые ЭВМ, в аналоговые, которые характерны для существующих телефонных линий (работает как демодулятор). Для соединения модема с ЭВМ используется стандартный последовательный порт связи, который имеется у каждого компьютера.

Модем может являться отдельным устройством, подключенным к ЭВМ. В последние годы все чаще используется встроенные модемы в виде электронной платы, устанавливаемой в компьютере.

Одной из важнейших характеристик модема является скорость передачи данных. Сегодня применяются модемы, передающие по телефонной сети данные со скоростью 1200-2400 бод (бод=бит/с) и выше (современные высокоскоростные модемы имеют быстродействие до 28800 бод).

Пусть используются модемы во время работы в сети может переслать 1200 бод (или 150 символов в секунду), тогда пересылка полной страницы текста (около 2500 знаков) займет около 17 с. переключение модема на 2400 бод удвоит скорость передачи. Модем, имеющий высокую скорость, как правило, позволяет работает и с низкой скоростью.

Максимальную скорость передачи данных ограничивает и качество телефонной сеть. Лучшие из сегодняшних модемов в состоянии передавать информацию даже по недостаточно качественным линиям со скоростью 1200 бод. Для этого они имеют специальные средства корректировки ошибок, возникающих в процессе передачи данных. Такие модемы сравнительно дороги, но они обеспечивают связь практически любую через телефонную сеть и выполняют множество вспомогательных функций. Эти модемы часто называют «интеллектуальными».

Линия связи. Для компьютерной коммуникации используют коммутируемые телефонные линии, выделенные линии связи, спутниковую связь и каналы цифровой связи. Пропускная способность каналов цифровой связи составляет от десятков тысяч до сотен миллионов килобод. Они используются для быстрой передачи между ЭВМ больших и очень больших объемов информации. Развитие цифровых каналов приводит к революции в технике связи, открывает немыслимые еще вчера возможности для абонентов компьютерных сетей, обещает интегрировать в единое целое все существующие сегодня средства связи.

Адресация.

Важная часть устройства сети- способ идентификации абонентов в сети, называемый адресацией. Наиболее распространен доменный способ адресации. На его основе построена, например, сеть Интернет. Типичный адрес в этой сети- dedushka@zhukov.derevnya.ru. Здесь символы перед @ задают имя абонента, а после @ - имя компьютера, на котором установлена данная почтовая система. В рассматриваемом имени первая часть zhukov- это название машины, derevnya- название организации, региона или города, а ru- код страницы (Russia). Самый общий элемент имени называются доменом первого уровня, derevnya- второго и т.д.

Количество доменов в адресе абонента не регламентируется. Адрес другого пользователя на том же компьютере может быть babushka@zhukov.derevnya.ru. домены первого уровня стандартизированы, а остальные выбираются по желанию владельца адреса.

Наличие у пользователя адреса в сети позволяет им посылать и получать сообщения разного характера от других пользователей сети, т. е. использовать компьютерную (электронную)почту для пересылки информации и общения.

Кроме услуг компьютерной почты сеть Интернет, например, предоставляет возможность получать доступ к многочисленным каталогам, базам данных, пользоваться BBS- электронной доской объявлений, где любой абонент может прочитать всю хранящуюся информацию общего доступа и записать свою. Такой режим работы позволяет использовать электронную доску для проведения компьютерных конференций (телеконференций), в том числе общаться в реальном времени (on-line), т. е. абонент может прочитать информацию уже в процессе ее ввода собеседником. Широкое развитие получает WWW (World Wide Web- всемирная паутина), позволяющая осуществлять все перечисленные операции в сети с помощью полноэкранного графического интерфейса.

Благодаря компьютерным телекоммуникациям стало реально дистанционное обучение, когда с помощью компьютерной связи можно из любой точки планеты прослушать лекции лучших преподавателей, получить доступ в ведущие научные лаборатории мира и музеи.

Локальные вычислительные сети.

Локальные компьютерные (вычислительные)сети (ЛВС)-это коммуникационная система, которая (как видимо из названия) охватывает относительно небольшие расстояния. Обычно ЛВС ограничена офисом, кабинетом информатики, одним зданием. Наиболее распространены локальные сети из 3-12 персональных компьютеров, различных запоминающих устройств, печатающих и других специализированных периферийных устройств. ЛВС должны быть легко адаптируемы, т. е. иметь гибкую архитектуру, которая позволяет произвольно располагать рабочие места, добавлять или переставлять персональные компьютеры или периферийные устройства. В хорошо организованной сети сбой, поломка одной из составных частей не влияет на работу остальных.

Одной из существенных особенностей ЛВС является использование всеми ПК (рабочими станциями), включенных в сеть потенциальных возможностей других устройств сети. Благодаря этому возможна одновременная и даже совместная работа с какой-либо программой, обмен файлами и письмами, разделение периферийных устройств (принтеров, накопителей CD-ROM и т.д.).

Составные части ЛВС:рабочие станции (ПК), кабель, сетевая интерфейсная плата (в ПК), сервер сети, центральное запоминающее устройство.

К кабелю передачи данных подключено каждое устройство в сети, именно поэтому возможен обмен информацией между ними. ЛВС могут работать с разными кабелями- от двужильных телефонных до оптоволоконных, позволяющих повысить качество и скорость передачи данных.

Сетевая интерфейсная плата, или сетевой адаптер, - специальное аппаратное средство для эффективного взаимодействия персональных компьютеров сети. Она устанавливается в одно из свободных гнезд расширения шины ПК, а кабель передачи данных подключается в разъем на этой плате.

Сервер сети- это специальная система управления сетевыми ресурсами общего доступа. Сервер является комбинацией аппаратного и программного обеспечения. Аппаратным средством может быть типовой ПК или специально спроектированный компьютер.

Центральное запоминающее устройство- это жесткий магнитный диск, содержащий программы и данные, к которым допустим совместный доступ пользователя сети. Одна сеть может иметь несколько таких дисков, что позволяет, например, хранить базу данных большого объема, распределенную на несколько дисков.

Таким образом, ЛВС представима как система общего доступу к различным устройствам с возможностью коммуникации (связи) внутри нее, допускающая через подключение ЛВС к сети другого уровня общения с другими ЛВС и персональными компьютерами.

Можно утверждать, что компьютерные сети служат объединению людей всего земного шара.


121



Информация о работе «Билеты и ответы по Информатике за 11-й класс»
Раздел: Информатика, программирование
Количество знаков с пробелами: 257002
Количество таблиц: 0
Количество изображений: 22

Похожие работы

Скачать
225204
6
0

... полезно учителю при подготовке рассказа на уроке. В данной публикации сделана попытка выделить тот самый минимум, который ученику необходимо включить в свой ответ на экзамене. Примечания для учеников При ответе надо быть готовым к дополнительным вопросам об обосновании тех или иных утверждений. Например, каковы максимальное и минимальное значения 8-битного целого числа со знаком и почему их ...

Скачать
13151
2
0

... в год (1 урок в неделю, по стандарту 2 урока в неделю). Фрагмент плана: № Тема Содержание (8 класс) Количество часов 1 Введение в предмет ОИВТ Место информатики в научном мировоззрении. Основные темы курса ОИВТ. История развития ВТ. 1 2 Человек и информация Сущность информационной функции человека. Обмен информацией, хранение и обработка информации человеком. 1-2 ...

Скачать
177159
29
21

... в широкую практику разработки программ объектно-ориентированного программирования, впитавшего в себя идеи структурного и модульного программирования, структурное программирование стало фактом истории информатики. Билет № 9 Текстовый редактор, назначение и основные функции. Для работы с текстами на компьютере используются программные средства, называемые текстовыми редакторами или текстовыми ...

Скачать
115511
21
2

... позволяют организовать общение учащихся на более высоком уровне, вызывать у них потребность в обмене информацией, оказании помощи товарищу. Глава 2. Роль уроков информатики в развитии познавательной активности младших школьников В данной главе рассматриваются условия, способы и приемы, способствующие развитию познавательной активности младших школьников на уроках информатики, выделяются ...

0 комментариев


Наверх